blob: 67fd223c5c9b0e7b5ebc8f140ddaf833543e70c3 [file] [log] [blame]
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><meta name="description" content="spark.fmClassifier fits a factorization classification model against a SparkDataFrame.
Users can call summary to print a summary of the fitted model, predict to make
predictions on new data, and write.ml/read.ml to save/load fitted models.
Only categorical data is supported."><!-- Inform modern browsers that this page supports both dark and light color schemes,
and the page author prefers light. --><meta name="color-scheme" content="dark light"><script>
// If `prefers-color-scheme` is not supported, fall back to light mode.
// i.e. In this case, inject the `light` CSS before the others, with
// no media filter so that it will be downloaded with highest priority.
if (window.matchMedia("(prefers-color-scheme: dark)").media === "not all") {
document.documentElement.style.display = "none";
document.head.insertAdjacentHTML(
"beforeend",
"<link id=\"css\" rel=\"stylesheet\" href=\"https://bootswatch.com/5/flatly/bootstrap.css\" onload=\"document.documentElement.style.display = ''\">"
);
}
</script><title>Factorization Machines Classification Model — spark.fmClassifier • SparkR</title><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/font-awesome-6.5.2/css/all.min.css" rel="stylesheet"><link href="../deps/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet"><script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- bootstrap-toc --><script src="https://cdn.rawgit.com/afeld/bootstrap-toc/v1.0.1/dist/bootstrap-toc.min.js"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"><meta property="og:title" content="Factorization Machines Classification Model — spark.fmClassifier"><meta property="og:description" content="spark.fmClassifier fits a factorization classification model against a SparkDataFrame.
Users can call summary to print a summary of the fitted model, predict to make
predictions on new data, and write.ml/read.ml to save/load fitted models.
Only categorical data is supported."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--><!-- Flatly Theme - Light --><link id="css-light" rel="stylesheet" href="https://bootswatch.com/5/flatly/bootstrap.css" media="(prefers-color-scheme: light), (prefers-color-scheme: no-preference)"><!-- Darkly Theme - Dark --><link id="css-dark" rel="stylesheet" href="https://bootswatch.com/5/darkly/bootstrap.css" media="(prefers-color-scheme: dark)"><!-- preferably CSS --><link rel="stylesheet" href="../preferably.css"><link id="css-code-light" rel="stylesheet" href="../code-color-scheme-light.css" media="(prefers-color-scheme: light), (prefers-color-scheme: no-preference)"><link id="css-code-dark" rel="stylesheet" href="../code-color-scheme-dark.css" media="(prefers-color-scheme: dark)"><script src="../darkswitch.js"></script></head><body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-dark navbar-expand-lg bg-primary"><div class="container">
<a class="external-link navbar-brand" href="https://spark.apache.org/">
<img src="https://spark.apache.org/images/spark-logo-rev.svg" alt="" max-height="100%"></a>
<a class="navbar-brand me-2" href="../index.html">SparkR</a>
<small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">3.5.5</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-2">
<ul class="navbar-nav me-auto"><li class="active nav-item"><a class="nav-link" href="../reference/index.html">Reference</a></li>
<li class="nav-item dropdown">
<button class="nav-link dropdown-toggle" type="button" id="dropdown-articles" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true">Articles</button>
<ul class="dropdown-menu" aria-labelledby="dropdown-articles"><li><a class="dropdown-item" href="../articles/sparkr-vignettes.html">SparkR - Practical Guide</a></li>
</ul></li>
</ul><form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="" autocomplete="off"></form>
<ul class="navbar-nav"><li class="nav-item"><form class="form-inline" role="search">
<input class="form-control" type="search" name="search-input" id="search-input" autocomplete="off" aria-label="Search site" placeholder="Search for" data-search-index="../search.json"></form></li>
<li>
<a class="external-link nav-link" id="css-toggle-btn" aria-label="github">
<span class="fas fa fas fa-adjust fa-lg"></span>
</a>
</li>
</ul></div>
</div>
</nav><div class="container template-reference-topic">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<h1>Factorization Machines Classification Model</h1>
<div class="d-none name"><code>spark.fmClassifier.Rd</code></div>
</div>
<div class="ref-description section level2">
<p><code>spark.fmClassifier</code> fits a factorization classification model against a SparkDataFrame.
Users can call <code>summary</code> to print a summary of the fitted model, <code>predict</code> to make
predictions on new data, and <code>write.ml</code>/<code>read.ml</code> to save/load fitted models.
Only categorical data is supported.</p>
</div>
<div class="section level2">
<h2 id="ref-usage">Usage<a class="anchor" aria-label="anchor" href="#ref-usage"></a></h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">spark.fmClassifier</span><span class="op">(</span><span class="va">data</span>, <span class="va">formula</span>, <span class="va">...</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># S4 method for class 'SparkDataFrame,formula'</span></span>
<span><span class="fu">spark.fmClassifier</span><span class="op">(</span></span>
<span> <span class="va">data</span>,</span>
<span> <span class="va">formula</span>,</span>
<span> factorSize <span class="op">=</span> <span class="fl">8</span>,</span>
<span> fitLinear <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> regParam <span class="op">=</span> <span class="fl">0</span>,</span>
<span> miniBatchFraction <span class="op">=</span> <span class="fl">1</span>,</span>
<span> initStd <span class="op">=</span> <span class="fl">0.01</span>,</span>
<span> maxIter <span class="op">=</span> <span class="fl">100</span>,</span>
<span> stepSize <span class="op">=</span> <span class="fl">1</span>,</span>
<span> tol <span class="op">=</span> <span class="fl">1e-06</span>,</span>
<span> solver <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"adamW"</span>, <span class="st">"gd"</span><span class="op">)</span>,</span>
<span> thresholds <span class="op">=</span> <span class="cn">NULL</span>,</span>
<span> seed <span class="op">=</span> <span class="cn">NULL</span>,</span>
<span> handleInvalid <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"error"</span>, <span class="st">"keep"</span>, <span class="st">"skip"</span><span class="op">)</span></span>
<span><span class="op">)</span></span>
<span></span>
<span><span class="co"># S4 method for class 'FMClassificationModel'</span></span>
<span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">object</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># S4 method for class 'FMClassificationModel'</span></span>
<span><span class="fu"><a href="predict.html">predict</a></span><span class="op">(</span><span class="va">object</span>, <span class="va">newData</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># S4 method for class 'FMClassificationModel,character'</span></span>
<span><span class="fu"><a href="write.ml.html">write.ml</a></span><span class="op">(</span><span class="va">object</span>, <span class="va">path</span>, overwrite <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
</div>
<div class="section level2">
<h2 id="arguments">Arguments<a class="anchor" aria-label="anchor" href="#arguments"></a></h2>
<dl><dt id="arg-data">data<a class="anchor" aria-label="anchor" href="#arg-data"></a></dt>
<dd><p>a <code>SparkDataFrame</code> of observations and labels for model fitting.</p></dd>
<dt id="arg-formula">formula<a class="anchor" aria-label="anchor" href="#arg-formula"></a></dt>
<dd><p>a symbolic description of the model to be fitted. Currently only a few formula
operators are supported, including '~', '.', ':', '+', and '-'.</p></dd>
<dt id="arg--">...<a class="anchor" aria-label="anchor" href="#arg--"></a></dt>
<dd><p>additional arguments passed to the method.</p></dd>
<dt id="arg-factorsize">factorSize<a class="anchor" aria-label="anchor" href="#arg-factorsize"></a></dt>
<dd><p>dimensionality of the factors.</p></dd>
<dt id="arg-fitlinear">fitLinear<a class="anchor" aria-label="anchor" href="#arg-fitlinear"></a></dt>
<dd><p>whether to fit linear term. # TODO Can we express this with formula?</p></dd>
<dt id="arg-regparam">regParam<a class="anchor" aria-label="anchor" href="#arg-regparam"></a></dt>
<dd><p>the regularization parameter.</p></dd>
<dt id="arg-minibatchfraction">miniBatchFraction<a class="anchor" aria-label="anchor" href="#arg-minibatchfraction"></a></dt>
<dd><p>the mini-batch fraction parameter.</p></dd>
<dt id="arg-initstd">initStd<a class="anchor" aria-label="anchor" href="#arg-initstd"></a></dt>
<dd><p>the standard deviation of initial coefficients.</p></dd>
<dt id="arg-maxiter">maxIter<a class="anchor" aria-label="anchor" href="#arg-maxiter"></a></dt>
<dd><p>maximum iteration number.</p></dd>
<dt id="arg-stepsize">stepSize<a class="anchor" aria-label="anchor" href="#arg-stepsize"></a></dt>
<dd><p>stepSize parameter.</p></dd>
<dt id="arg-tol">tol<a class="anchor" aria-label="anchor" href="#arg-tol"></a></dt>
<dd><p>convergence tolerance of iterations.</p></dd>
<dt id="arg-solver">solver<a class="anchor" aria-label="anchor" href="#arg-solver"></a></dt>
<dd><p>solver parameter, supported options: "gd" (minibatch gradient descent) or "adamW".</p></dd>
<dt id="arg-thresholds">thresholds<a class="anchor" aria-label="anchor" href="#arg-thresholds"></a></dt>
<dd><p>in binary classification, in range [0, 1]. If the estimated probability of
class label 1 is &gt; threshold, then predict 1, else 0. A high threshold
encourages the model to predict 0 more often; a low threshold encourages the
model to predict 1 more often. Note: Setting this with threshold p is
equivalent to setting thresholds c(1-p, p).</p></dd>
<dt id="arg-seed">seed<a class="anchor" aria-label="anchor" href="#arg-seed"></a></dt>
<dd><p>seed parameter for weights initialization.</p></dd>
<dt id="arg-handleinvalid">handleInvalid<a class="anchor" aria-label="anchor" href="#arg-handleinvalid"></a></dt>
<dd><p>How to handle invalid data (unseen labels or NULL values) in features and
label column of string type.
Supported options: "skip" (filter out rows with invalid data),
"error" (throw an error), "keep" (put invalid data in
a special additional bucket, at index numLabels). Default
is "error".</p></dd>
<dt id="arg-object">object<a class="anchor" aria-label="anchor" href="#arg-object"></a></dt>
<dd><p>a FM Classification model fitted by <code>spark.fmClassifier</code>.</p></dd>
<dt id="arg-newdata">newData<a class="anchor" aria-label="anchor" href="#arg-newdata"></a></dt>
<dd><p>a SparkDataFrame for testing.</p></dd>
<dt id="arg-path">path<a class="anchor" aria-label="anchor" href="#arg-path"></a></dt>
<dd><p>The directory where the model is saved.</p></dd>
<dt id="arg-overwrite">overwrite<a class="anchor" aria-label="anchor" href="#arg-overwrite"></a></dt>
<dd><p>Overwrites or not if the output path already exists. Default is FALSE
which means throw exception if the output path exists.</p></dd>
</dl></div>
<div class="section level2">
<h2 id="value">Value<a class="anchor" aria-label="anchor" href="#value"></a></h2>
<p><code>spark.fmClassifier</code> returns a fitted Factorization Machines Classification Model.</p>
<p><code>summary</code> returns summary information of the fitted model, which is a list.</p>
<p><code>predict</code> returns the predicted values based on a FM Classification model.</p>
</div>
<div class="section level2">
<h2 id="note">Note<a class="anchor" aria-label="anchor" href="#note"></a></h2>
<p>spark.fmClassifier since 3.1.0</p>
<p>summary(FMClassificationModel) since 3.1.0</p>
<p>predict(FMClassificationModel) since 3.1.0</p>
<p>write.ml(FMClassificationModel, character) since 3.1.0</p>
</div>
<div class="section level2">
<h2 id="see-also">See also<a class="anchor" aria-label="anchor" href="#see-also"></a></h2>
<div class="dont-index"><p><a href="read.ml.html">read.ml</a></p></div>
</div>
<div class="section level2">
<h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="kw">if</span> <span class="op">(</span><span class="cn">FALSE</span><span class="op">)</span> <span class="op">{</span> <span class="co"># \dontrun{</span></span></span>
<span class="r-in"><span><span class="va">df</span> <span class="op">&lt;-</span> <span class="fu"><a href="read.df.html">read.df</a></span><span class="op">(</span><span class="st">"data/mllib/sample_binary_classification_data.txt"</span>, source <span class="op">=</span> <span class="st">"libsvm"</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># fit Factorization Machines Classification Model</span></span></span>
<span class="r-in"><span><span class="va">model</span> <span class="op">&lt;-</span> <span class="fu">spark.fmClassifier</span><span class="op">(</span></span></span>
<span class="r-in"><span> <span class="va">df</span>, <span class="va">label</span> <span class="op">~</span> <span class="va">features</span>,</span></span>
<span class="r-in"><span> regParam <span class="op">=</span> <span class="fl">0.01</span>, maxIter <span class="op">=</span> <span class="fl">10</span>, fitLinear <span class="op">=</span> <span class="cn">TRUE</span></span></span>
<span class="r-in"><span> <span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># get the summary of the model</span></span></span>
<span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># make predictions</span></span></span>
<span class="r-in"><span><span class="va">predictions</span> <span class="op">&lt;-</span> <span class="fu"><a href="predict.html">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">df</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># save and load the model</span></span></span>
<span class="r-in"><span><span class="va">path</span> <span class="op">&lt;-</span> <span class="st">"path/to/model"</span></span></span>
<span class="r-in"><span><span class="fu"><a href="write.ml.html">write.ml</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">path</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">savedModel</span> <span class="op">&lt;-</span> <span class="fu"><a href="read.ml.html">read.ml</a></span><span class="op">(</span><span class="va">path</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">savedModel</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="op">}</span> <span class="co"># }</span></span></span>
</code></pre></div>
</div>
</main><aside class="col-md-3"><nav id="toc" aria-label="Table of contents"><h2>On this page</h2>
</nav></aside></div>
<footer><div class="copyright">
<p></p><p>Developed by <a href="https://www.apache.org/" class="external-link"> The Apache Software Foundation</a>.</p>
</div>
<div class="pkgdown">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.1.1.</p>
<p class="preferably">Using <a href="https://preferably.amirmasoudabdol.name/?source=footer" class="external-link">preferably</a> template.</p>
</div>
</footer></div>
</body></html>