blob: a0e9eefeba3280961a8b31852da3c7901add5933 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.mllib.recommendation &#8212; PySpark 3.5.3 documentation</title>
<link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/mllib/recommendation.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl">
<div id="navbar-start">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo">
</a>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse">
<div id="navbar-center" class="mr-auto">
<div class="navbar-center-item">
<ul id="navbar-main-elements" class="navbar-nav">
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../index.html">
Overview
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../development/index.html">
Development
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</div>
</div>
<div id="navbar-end">
<div class="navbar-end-item">
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
3.5.3
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/mllib/recommendation.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script>
</div>
</div>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<!-- Only show if we have sidebars configured, else just a small margin -->
<div class="col-12 col-md-3 bd-sidebar">
<div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
</div>
</nav>
</div>
<div class="sidebar-end-items">
</div>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.mllib.recommendation</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">array</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">NamedTuple</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Type</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">since</span>
<span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">RDD</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.common</span> <span class="kn">import</span> <span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">callMLlibFunc</span><span class="p">,</span> <span class="n">inherit_doc</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">JavaLoader</span><span class="p">,</span> <span class="n">JavaSaveable</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">DataFrame</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;MatrixFactorizationModel&quot;</span><span class="p">,</span> <span class="s2">&quot;ALS&quot;</span><span class="p">,</span> <span class="s2">&quot;Rating&quot;</span><span class="p">]</span>
<div class="viewcode-block" id="Rating"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.Rating.html#pyspark.mllib.recommendation.Rating">[docs]</a><span class="k">class</span> <span class="nc">Rating</span><span class="p">(</span><span class="n">NamedTuple</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Represents a (user, product, rating) tuple.</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; r = Rating(1, 2, 5.0)</span>
<span class="sd"> &gt;&gt;&gt; (r.user, r.product, r.rating)</span>
<span class="sd"> (1, 2, 5.0)</span>
<span class="sd"> &gt;&gt;&gt; (r[0], r[1], r[2])</span>
<span class="sd"> (1, 2, 5.0)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">user</span><span class="p">:</span> <span class="nb">int</span>
<span class="n">product</span><span class="p">:</span> <span class="nb">int</span>
<span class="n">rating</span><span class="p">:</span> <span class="nb">float</span>
<span class="k">def</span> <span class="nf">__reduce__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">Type</span><span class="p">[</span><span class="s2">&quot;Rating&quot;</span><span class="p">],</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]:</span>
<span class="k">return</span> <span class="n">Rating</span><span class="p">,</span> <span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">user</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">product</span><span class="p">),</span> <span class="nb">float</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">rating</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">MatrixFactorizationModel</span><span class="p">(</span>
<span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">JavaSaveable</span><span class="p">,</span> <span class="n">JavaLoader</span><span class="p">[</span><span class="s2">&quot;MatrixFactorizationModel&quot;</span><span class="p">]</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;A matrix factorisation model trained by regularized alternating</span>
<span class="sd"> least-squares.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; r1 = (1, 1, 1.0)</span>
<span class="sd"> &gt;&gt;&gt; r2 = (1, 2, 2.0)</span>
<span class="sd"> &gt;&gt;&gt; r3 = (2, 1, 2.0)</span>
<span class="sd"> &gt;&gt;&gt; ratings = sc.parallelize([r1, r2, r3])</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.trainImplicit(ratings, 1, seed=10)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 0.4...</span>
<span class="sd"> &gt;&gt;&gt; testset = sc.parallelize([(1, 2), (1, 1)])</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(ratings, 2, seed=0)</span>
<span class="sd"> &gt;&gt;&gt; model.predictAll(testset).collect()</span>
<span class="sd"> [Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)]</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(ratings, 4, seed=10)</span>
<span class="sd"> &gt;&gt;&gt; model.userFeatures().collect()</span>
<span class="sd"> [(1, array(&#39;d&#39;, [...])), (2, array(&#39;d&#39;, [...]))]</span>
<span class="sd"> &gt;&gt;&gt; model.recommendUsers(1, 2)</span>
<span class="sd"> [Rating(user=2, product=1, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]</span>
<span class="sd"> &gt;&gt;&gt; model.recommendProducts(1, 2)</span>
<span class="sd"> [Rating(user=1, product=2, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]</span>
<span class="sd"> &gt;&gt;&gt; model.rank</span>
<span class="sd"> 4</span>
<span class="sd"> &gt;&gt;&gt; first_user = model.userFeatures().take(1)[0]</span>
<span class="sd"> &gt;&gt;&gt; latents = first_user[1]</span>
<span class="sd"> &gt;&gt;&gt; len(latents)</span>
<span class="sd"> 4</span>
<span class="sd"> &gt;&gt;&gt; model.productFeatures().collect()</span>
<span class="sd"> [(1, array(&#39;d&#39;, [...])), (2, array(&#39;d&#39;, [...]))]</span>
<span class="sd"> &gt;&gt;&gt; first_product = model.productFeatures().take(1)[0]</span>
<span class="sd"> &gt;&gt;&gt; latents = first_product[1]</span>
<span class="sd"> &gt;&gt;&gt; len(latents)</span>
<span class="sd"> 4</span>
<span class="sd"> &gt;&gt;&gt; products_for_users = model.recommendProductsForUsers(1).collect()</span>
<span class="sd"> &gt;&gt;&gt; len(products_for_users)</span>
<span class="sd"> 2</span>
<span class="sd"> &gt;&gt;&gt; products_for_users[0]</span>
<span class="sd"> (1, (Rating(user=1, product=2, rating=...),))</span>
<span class="sd"> &gt;&gt;&gt; users_for_products = model.recommendUsersForProducts(1).collect()</span>
<span class="sd"> &gt;&gt;&gt; len(users_for_products)</span>
<span class="sd"> 2</span>
<span class="sd"> &gt;&gt;&gt; users_for_products[0]</span>
<span class="sd"> (1, (Rating(user=2, product=1, rating=...),))</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(ratings, 1, nonnegative=True, seed=123456789)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 3.73...</span>
<span class="sd"> &gt;&gt;&gt; df = sqlContext.createDataFrame([Rating(1, 1, 1.0), Rating(1, 2, 2.0), Rating(2, 1, 2.0)])</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(df, 1, nonnegative=True, seed=123456789)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 3.73...</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=123456789)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 0.4...</span>
<span class="sd"> &gt;&gt;&gt; import os, tempfile</span>
<span class="sd"> &gt;&gt;&gt; path = tempfile.mkdtemp()</span>
<span class="sd"> &gt;&gt;&gt; model.save(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel = MatrixFactorizationModel.load(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predict(2, 2)</span>
<span class="sd"> 0.4...</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predictAll(testset).collect()</span>
<span class="sd"> [Rating(...</span>
<span class="sd"> &gt;&gt;&gt; from shutil import rmtree</span>
<span class="sd"> &gt;&gt;&gt; try:</span>
<span class="sd"> ... rmtree(path)</span>
<span class="sd"> ... except OSError:</span>
<span class="sd"> ... pass</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="MatrixFactorizationModel.predict"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.predict">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">user</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">product</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predicts rating for the given user and product.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">user</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">product</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.predictAll"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.predictAll">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">predictAll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">user_product</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">]])</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Rating</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a list of predicted ratings for input user and product</span>
<span class="sd"> pairs.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">user_product</span><span class="p">,</span> <span class="n">RDD</span><span class="p">),</span> <span class="s2">&quot;user_product should be RDD of (user, product)&quot;</span>
<span class="n">first</span> <span class="o">=</span> <span class="n">user_product</span><span class="o">.</span><span class="n">first</span><span class="p">()</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">first</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;user_product should be RDD of (user, product)&quot;</span>
<span class="n">user_product</span> <span class="o">=</span> <span class="n">user_product</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">u_p</span><span class="p">:</span> <span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">u_p</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="nb">int</span><span class="p">(</span><span class="n">u_p</span><span class="p">[</span><span class="mi">1</span><span class="p">])))</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;predict&quot;</span><span class="p">,</span> <span class="n">user_product</span><span class="p">)</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.userFeatures"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.userFeatures">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.2.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">userFeatures</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">array</span><span class="o">.</span><span class="n">array</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a paired RDD, where the first element is the user and the</span>
<span class="sd"> second is an array of features corresponding to that user.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;getUserFeatures&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="n">array</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="s2">&quot;d&quot;</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.productFeatures"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.productFeatures">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.2.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">productFeatures</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">array</span><span class="o">.</span><span class="n">array</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a paired RDD, where the first element is the product and the</span>
<span class="sd"> second is an array of features corresponding to that product.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;getProductFeatures&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="n">array</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="s2">&quot;d&quot;</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendUsers"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendUsers">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">recommendUsers</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">product</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="n">Rating</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of users for a given product and</span>
<span class="sd"> returns a list of Rating objects sorted by the predicted rating in</span>
<span class="sd"> descending order.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recommendUsers&quot;</span><span class="p">,</span> <span class="n">product</span><span class="p">,</span> <span class="n">num</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendProducts"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendProducts">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">recommendProducts</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">user</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="n">Rating</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of products for a given user and</span>
<span class="sd"> returns a list of Rating objects sorted by the predicted rating in</span>
<span class="sd"> descending order.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recommendProducts&quot;</span><span class="p">,</span> <span class="n">user</span><span class="p">,</span> <span class="n">num</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendProductsForUsers"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendProductsForUsers">[docs]</a> <span class="k">def</span> <span class="nf">recommendProductsForUsers</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">Rating</span><span class="p">,</span> <span class="o">...</span><span class="p">]]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of products for all users. The</span>
<span class="sd"> number of recommendations returned per user may be less than &quot;num&quot;.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;wrappedRecommendProductsForUsers&quot;</span><span class="p">,</span> <span class="n">num</span><span class="p">)</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendUsersForProducts"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendUsersForProducts">[docs]</a> <span class="k">def</span> <span class="nf">recommendUsersForProducts</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">Rating</span><span class="p">,</span> <span class="o">...</span><span class="p">]]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of users for all products. The</span>
<span class="sd"> number of recommendations returned per product may be less than</span>
<span class="sd"> &quot;num&quot;.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;wrappedRecommendUsersForProducts&quot;</span><span class="p">,</span> <span class="n">num</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">rank</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Rank for the features in this model&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;rank&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="MatrixFactorizationModel.load"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.load">[docs]</a> <span class="nd">@classmethod</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.3.1&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MatrixFactorizationModel&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Load a model from the given path&quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_load_java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">wrapper</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">api</span><span class="o">.</span><span class="n">python</span><span class="o">.</span><span class="n">MatrixFactorizationModelWrapper</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">return</span> <span class="n">MatrixFactorizationModel</span><span class="p">(</span><span class="n">wrapper</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="ALS"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.ALS.html#pyspark.mllib.recommendation.ALS">[docs]</a><span class="k">class</span> <span class="nc">ALS</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Alternating Least Squares matrix factorization</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">_prepare</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">ratings</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Rating</span><span class="p">]:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">ratings</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span>
<span class="k">pass</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">ratings</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">):</span>
<span class="n">ratings</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">rdd</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Ratings should be represented by either an RDD or a DataFrame, &quot;</span>
<span class="s2">&quot;but got </span><span class="si">%s</span><span class="s2">.&quot;</span> <span class="o">%</span> <span class="nb">type</span><span class="p">(</span><span class="n">ratings</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">first</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">first</span><span class="p">()</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="n">Rating</span><span class="p">):</span>
<span class="k">pass</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
<span class="n">ratings</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">Rating</span><span class="p">(</span><span class="o">*</span><span class="n">x</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;Expect a Rating or a tuple/list, but got </span><span class="si">%s</span><span class="s2">.&quot;</span> <span class="o">%</span> <span class="nb">type</span><span class="p">(</span><span class="n">first</span><span class="p">))</span>
<span class="k">return</span> <span class="n">ratings</span>
<div class="viewcode-block" id="ALS.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.ALS.html#pyspark.mllib.recommendation.ALS.train">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">ratings</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Rating</span><span class="p">],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]],</span>
<span class="n">rank</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">iterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span>
<span class="n">lambda_</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span><span class="p">,</span>
<span class="n">blocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">MatrixFactorizationModel</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a matrix factorization model given an RDD of ratings by users</span>
<span class="sd"> for a subset of products. The ratings matrix is approximated as the</span>
<span class="sd"> product of two lower-rank matrices of a given rank (number of</span>
<span class="sd"> features). To solve for these features, ALS is run iteratively with</span>
<span class="sd"> a configurable level of parallelism.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ratings : :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of `Rating` or (userID, productID, rating) tuple.</span>
<span class="sd"> rank : int</span>
<span class="sd"> Number of features to use (also referred to as the number of latent factors).</span>
<span class="sd"> iterations : int, optional</span>
<span class="sd"> Number of iterations of ALS.</span>
<span class="sd"> (default: 5)</span>
<span class="sd"> lambda\\_ : float, optional</span>
<span class="sd"> Regularization parameter.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> blocks : int, optional</span>
<span class="sd"> Number of blocks used to parallelize the computation. A value</span>
<span class="sd"> of -1 will use an auto-configured number of blocks.</span>
<span class="sd"> (default: -1)</span>
<span class="sd"> nonnegative : bool, optional</span>
<span class="sd"> A value of True will solve least-squares with nonnegativity</span>
<span class="sd"> constraints.</span>
<span class="sd"> (default: False)</span>
<span class="sd"> seed : bool, optional</span>
<span class="sd"> Random seed for initial matrix factorization model. A value</span>
<span class="sd"> of None will use system time as the seed.</span>
<span class="sd"> (default: None)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;trainALSModel&quot;</span><span class="p">,</span>
<span class="bp">cls</span><span class="o">.</span><span class="n">_prepare</span><span class="p">(</span><span class="n">ratings</span><span class="p">),</span>
<span class="n">rank</span><span class="p">,</span>
<span class="n">iterations</span><span class="p">,</span>
<span class="n">lambda_</span><span class="p">,</span>
<span class="n">blocks</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">,</span>
<span class="n">seed</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">MatrixFactorizationModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.trainImplicit"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.ALS.html#pyspark.mllib.recommendation.ALS.trainImplicit">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">trainImplicit</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">ratings</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Rating</span><span class="p">],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]],</span>
<span class="n">rank</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">iterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span>
<span class="n">lambda_</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span><span class="p">,</span>
<span class="n">blocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span>
<span class="n">alpha</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">MatrixFactorizationModel</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a matrix factorization model given an RDD of &#39;implicit</span>
<span class="sd"> preferences&#39; of users for a subset of products. The ratings matrix</span>
<span class="sd"> is approximated as the product of two lower-rank matrices of a</span>
<span class="sd"> given rank (number of features). To solve for these features, ALS</span>
<span class="sd"> is run iteratively with a configurable level of parallelism.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ratings : :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of `Rating` or (userID, productID, rating) tuple.</span>
<span class="sd"> rank : int</span>
<span class="sd"> Number of features to use (also referred to as the number of latent factors).</span>
<span class="sd"> iterations : int, optional</span>
<span class="sd"> Number of iterations of ALS.</span>
<span class="sd"> (default: 5)</span>
<span class="sd"> lambda\\_ : float, optional</span>
<span class="sd"> Regularization parameter.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> blocks : int, optional</span>
<span class="sd"> Number of blocks used to parallelize the computation. A value</span>
<span class="sd"> of -1 will use an auto-configured number of blocks.</span>
<span class="sd"> (default: -1)</span>
<span class="sd"> alpha : float, optional</span>
<span class="sd"> A constant used in computing confidence.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> nonnegative : bool, optional</span>
<span class="sd"> A value of True will solve least-squares with nonnegativity</span>
<span class="sd"> constraints.</span>
<span class="sd"> (default: False)</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed for initial matrix factorization model. A value</span>
<span class="sd"> of None will use system time as the seed.</span>
<span class="sd"> (default: None)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;trainImplicitALSModel&quot;</span><span class="p">,</span>
<span class="bp">cls</span><span class="o">.</span><span class="n">_prepare</span><span class="p">(</span><span class="n">ratings</span><span class="p">),</span>
<span class="n">rank</span><span class="p">,</span>
<span class="n">iterations</span><span class="p">,</span>
<span class="n">lambda_</span><span class="p">,</span>
<span class="n">blocks</span><span class="p">,</span>
<span class="n">alpha</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">,</span>
<span class="n">seed</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">MatrixFactorizationModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">import</span> <span class="nn">pyspark.mllib.recommendation</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SQLContext</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">recommendation</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">,</span> <span class="s2">&quot;PythonTest&quot;</span><span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">sc</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sqlContext&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">SQLContext</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
</div>
</main>
</div>
</div>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<div class="footer-item">
<p class="copyright">
&copy; Copyright .<br>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br>
</p>
</div>
</div>
</footer>
</body>
</html>