blob: f091cee7522f11d2f7438fc505e611f7b9c6ca16 [file] [log] [blame]
/*
COPYRIGHT
The following is a notice of limited availability of the code, and disclaimer
which must be included in the prologue of the code and in all source listings
of the code.
(C) COPYRIGHT 2008 University of Chicago
Permission is hereby granted to use, reproduce, prepare derivative works, and
to redistribute to others. This software was authored by:
D. Levine
Mathematics and Computer Science Division
Argonne National Laboratory Group
with programming assistance of participants in Argonne National
Laboratory's SERS program.
GOVERNMENT LICENSE
Portions of this material resulted from work developed under a
U.S. Government Contract and are subject to the following license: the
Government is granted for itself and others acting on its behalf a paid-up,
nonexclusive, irrevocable worldwide license in this computer software to
reproduce, prepare derivative works, and perform publicly and display
publicly.
DISCLAIMER
This computer code material was prepared, in part, as an account of work
sponsored by an agency of the United States Government. Neither the United
States, nor the University of Chicago, nor any of their employees, makes any
warranty express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights.
*/
/*****************************************************************************
* FILE: evaluate.c: This file contains routines specific to the evaluation
* of the strings.
*
* Authors: David M. Levine, Philip L. Hallstrom, David M. Noelle,
* Brian P. Walenz
*****************************************************************************/
#include "pgapack.h"
/*U****************************************************************************
PGASetEvaluation - Set the evaluation function value for a string to a
specified value. Also sets the evaulation up to date flag to PGA_TRUE.
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population string p is in
val - the (user) evaluation value to assign to string p
Outputs:
Sets the evaluation function value of string p and the EvalUpToDate
flag (to PGA_TRUE) via side effect
Example:
Set the evaluation function value of string p in population PGA_NEWPOP
to 123.456.
PGAContext *ctx;
int p;
:
PGASetEvaluation(ctx, p, PGA_NEWPOP, 123.456);
****************************************************************************U*/
void PGASetEvaluation ( PGAContext *ctx, int p, int pop, double val )
{
PGAIndividual *ind;
PGADebugEntered("PGASetEvaluation");
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGASetEvaluation", "p = ",
PGA_INT, (void *) &p );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGASetEvaluation", "pop = ",
PGA_INT, (void *) &pop );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGASetEvaluation", "val = ",
PGA_DOUBLE, (void *) &val );
ind = PGAGetIndividual ( ctx, p, pop );
ind->evalfunc = val;
ind->evaluptodate = PGA_TRUE;
PGADebugExited("PGASetEvaluation");
}
/*U***************************************************************************
PGAGetEvaluation - returns the evaluation function value for
string p in population pop
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
Outputs:
The evaluation function value for string p in population pop
Example:
PGAContext *ctx;
int p;
double eval;
:
eval = PGAGetEvaluation(ctx, p, PGA_NEWPOP);
***************************************************************************U*/
double PGAGetEvaluation ( PGAContext *ctx, int p, int pop )
{
PGAIndividual *ind;
PGADebugEntered("PGAGetEvaluation");
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGAGetEvaluation", "p = ",
PGA_INT, (void *) &p );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGAGetEvaluation", "pop = ",
PGA_INT, (void *) &pop );
ind = PGAGetIndividual ( ctx, p, pop );
#ifndef OPTIMIZE
if (ind->evaluptodate != PGA_TRUE)
PGAError(ctx, "Evaluation not up to date. Returning old evaluation.",
PGA_WARNING, PGA_VOID, NULL);
#endif
PGADebugExited("PGAGetEvaluation");
return(ind->evalfunc);
}
/*U****************************************************************************
PGASetEvaluationUpToDateFlag - sets the flag associated with a
string to PGA_TRUE or PGA_FLASE to indicate whether the evaluate
function value is out-of-date or not. Note that this flag is always
set to PGA_TRUE when PGASetEvaluation is called.
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population string p is in
status - boolean for whether up-to-date
Outputs:
Sets the EvalUpToDate associated with the evaluation function value of
string p via side effect
Example:
Set the evaluation function flag for string p in population PGA_NEWPOP
to PGA_FALSE (as might happen after, for example, calling a hill-climbing
routine that modified this string).
PGAContext *ctx;
int p;
:
PGASetEvaluationUpToDateFlag(ctx, p, PGA_NEWPOP, PGA_FALSE);
****************************************************************************U*/
void PGASetEvaluationUpToDateFlag ( PGAContext *ctx, int p, int pop,
int status )
{
PGAIndividual *ind;
PGADebugEntered("PGASetEvaluationUpToDateFlag");
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGASetEvaluationUpToDateFlag",
"p = ", PGA_INT, (void *) &p );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGASetEvaluationUpToDateFlag",
"pop = ", PGA_INT, (void *) &pop );
ind = PGAGetIndividual ( ctx, p, pop );
switch(status) {
case PGA_TRUE:
case PGA_FALSE:
ind->evaluptodate = status;
break;
default:
PGAError(ctx, "PGASetEvaluationUpToDateFlag: Invalid value of status:",
PGA_FATAL, PGA_INT, (void *) &status);
break;
}
PGADebugExited("PGASetEvaluationUpToDateFlag");
}
/*U***************************************************************************
PGAGetEvaluationUpToDateFlag - returns true/false to indicate
whether the evaluate function value is up to date
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
Outputs:
Returns PGA_TRUE if the evaluate function value is up to date.
Otherwise, returns PGA_FALSE
Example:
PGAContext *ctx;
int uptodate;
:
uptodate = PGAGetEvaluationUpToDateFlag(ctx);
switch (uptodate) {
case PGA_TRUE:
printf("Evaluation function value current\n");
break;
case PGA_FALSE:
printf("Evaluation function value out-of-date\n");
break;
}
***************************************************************************U*/
int PGAGetEvaluationUpToDateFlag ( PGAContext *ctx, int p, int pop )
{
PGAIndividual *ind;
PGADebugEntered("PGAGetEvaluationUpToDateFlag");
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGAGetEvaluationUpToDateFlag",
"p = ", PGA_INT, (void *) &p );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGAGetEvaluationUpToDateFlag",
"p = ", PGA_INT, (void *) &pop );
ind = PGAGetIndividual ( ctx, p, pop );
PGADebugExited("PGAGetEvaluationUpToDateFlag");
return(ind->evaluptodate);
}
/*U****************************************************************************
PGAGetRealFromBinary - Interpets a binary string as encoding a real value
and returns the real value it represents.
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in the binary representation
end - ending bit position in the binary representation
lower - lower bound of the interval the real number is defined on
upper - lower bound of the interval the real number is defined on
Outputs:
The real value encoded by the binary string
Example:
Decode a real value from the string p in population PGA_NEWPOP. The
value to decode lies on the interval [-10,20] and is represented
using the 20 bits in bit positions 10--29.
double x;
:
x = PGAGetRealFromBinary(ctx, p, PGA_NEWPOP, 10, 29, -10.0, 20.0);
****************************************************************************U*/
double PGAGetRealFromBinary(PGAContext *ctx, int p, int pop, int start,
int end, double lower, double upper)
{
int length, sum;
double value;
PGADebugEntered("PGAGetRealFromBinary");
PGACheckDataType("PGAGetRealFromBinary", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (start < 0)
PGAError(ctx, "PGAGetRealFromBinary: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAGetRealFromBinary: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAGetRealFromBinary: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
if (lower >= upper)
PGAError(ctx, "PGAGetRealFromBinary: lower exceeds upper:",
PGA_FATAL, PGA_DOUBLE, (void *) &lower);
sum = PGAGetIntegerFromBinary(ctx, p, pop, start, end);
value = PGAMapIntegerToReal(ctx, sum, 0,
(length == sizeof(unsigned) * 8 - 1)
? INT_MAX : (1u << length) - 1, lower, upper);
PGADebugExited("PGAGetRealFromBinary");
return(value);
}
/*U****************************************************************************
PGAGetRealFromGrayCode - interpets a binary reflected Gray code sequence in
a binary string as encoding a real value and returns the real value it
represents.
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in the binary representation
end - ending bit position in the binary representation
lower - lower bound of the interval the real number is defined on
upper - lower bound of the interval the real number is defined on
Outputs:
The real value encoded by the binary reflected Gray code sequence
Example:
Decode a real value from the string p in population PGA_NEWPOP. The
value to decode lies on the interval [-10,20] and is represented
using the 20 bits in bit positions 10--29.
double x;
:
x = PGAGetRealFromGrayCode(ctx, p, PGA_NEWPOP, 10, 29, -10.0, 20.0);
****************************************************************************U*/
double PGAGetRealFromGrayCode(PGAContext *ctx, int p, int pop, int start,
int end, double lower, double upper)
{
int length, sum;
double value;
PGADebugEntered("PGAGetRealFromGrayCode");
PGACheckDataType("PGAGetRealFromGrayCode", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (start < 0)
PGAError(ctx, "PGAGetRealFromGrayCode: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAGetRealFromGrayCode: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAGetRealFromGrayCode: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
if (lower >= upper)
PGAError(ctx, "PGAGetRealFromGrayCode: lower exceeds upper:",
PGA_FATAL, PGA_DOUBLE, (void *) &lower);
sum = PGAGetIntegerFromGrayCode(ctx, p, pop, start, end);
value = PGAMapIntegerToReal(ctx, sum, 0,
(length == sizeof(unsigned) * 8 - 1)
? INT_MAX : (1u << length) - 1, lower, upper);
PGADebugExited("PGAGetRealFromGrayCode");
return(value);
}
/*U****************************************************************************
PGAEncodeRealAsBinary - encodes a real value as a binary string
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in p to encode val in
end - ending bit position in p to encode val in
low - lower bound of the interval the val is defined on
high - lower bound of the interval the val is defined on
val - the real number to be represented as a binary string
Outputs:
The string is modified by side-effect.
Example:
Encode 3.14 from the interval [0,10] in 30 bits in bit positions
0--29 in string p in population PGA_NEWPOP.
PGAContext *ctx;
int p;
:
PGAEncodeRealAsBinary(ctx, p, PGA_NEWPOP, 0, 29, 0.0, 10.0, 3.14);
****************************************************************************U*/
void PGAEncodeRealAsBinary(PGAContext *ctx, int p, int pop, int start,
int end, double low, double high, double val)
{
int length, d;
PGADebugEntered("PGAEncodeRealAsBinary");
PGACheckDataType("PGAEncodeRealAsBinary", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (start < 0)
PGAError(ctx, "PGAEncodeRealAsBinary: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAEncodeRealAsBinary: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAEncodeRealAsBinary: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
if (low >= high)
PGAError(ctx, "PGAEncodeRealAsBinary: low exceeds high:",
PGA_FATAL, PGA_DOUBLE, (void *) &low);
if (val < low || val > high)
PGAError(ctx, "PGAEncodeRealAsBinary: val outside of bounds:",
PGA_FATAL, PGA_DOUBLE, (void *) &val);
d = PGAMapRealToInteger(ctx, val, low, high, 0,
(length == sizeof(unsigned) * 8 - 1)
? INT_MAX : (1u << length) - 1);
PGAEncodeIntegerAsBinary(ctx, p, pop, start, end, d);
PGADebugExited("PGAEncodeRealAsBinary");
}
/*U****************************************************************************
PGAEncodeRealAsGrayCode - encodes a real value as a binary reflected Gray
code sequence
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in p to encode val in
end - ending bit position in p to encode val in
low - lower bound of the interval the val is defined on
high - lower bound of the interval the val is defined on
val - the real number to be represented as a binary string
Outputs:
The string is modified by side-effect.
Example:
Encode 3.14 from the interval [0,10] in 30 bits in bit positions
0--29 in string p in population PGA_NEWPOP as a binary reflected Gray
code sequence.
PGAContext *ctx;
int p;
:
PGAEncodeRealAsGrayCode(ctx, p, PGA_NEWPOP, 0, 29, 0.0, 10.0, 3.14);
****************************************************************************U*/
void PGAEncodeRealAsGrayCode(PGAContext *ctx, int p, int pop, int start,
int end, double low, double high, double val)
{
int length, d;
PGADebugEntered("PGAEncodeRealAsGrayCode");
PGACheckDataType("PGAEncodeRealAsGrayCode", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (start < 0)
PGAError(ctx, "PGAEncodeRealAsGrayCode: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAEncodeRealAsGrayCode: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAEncodeRealAsGrayCode: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
if (low >= high)
PGAError(ctx, "PGAEncodeRealAsGrayCode: low exceeds high:",
PGA_FATAL, PGA_DOUBLE, (void *) &low);
if (val < low || val > high)
PGAError(ctx, "PGAEncodeRealAsGrayCode: val outside of bounds:",
PGA_FATAL, PGA_DOUBLE, (void *) &val);
d = PGAMapRealToInteger(ctx, val, low, high, 0,
(length == sizeof(unsigned) * 8 - 1) ? INT_MAX :
(1u << length) - 1);
PGAEncodeIntegerAsGrayCode(ctx, p, pop, start, end, d);
PGADebugExited("PGAEncodeRealAsGrayCode");
}
/*U****************************************************************************
PGAGetIntegerFromBinary - interpets a binary string as encoding an integer
value and returns the integer value it represents.
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in the binary representation
end - ending bit position in the binary representation
Outputs:
The integer value encoded by the binary string
Example:
Get an integer j from bits 10--29 of string p in population PGA_NEWPOP.
PGAContext *ctx;
int j, p;
:
j = PGAGetIntegerFromBinary(ctx, p, PGA_NEWPOP, 10, 29);
****************************************************************************U*/
int PGAGetIntegerFromBinary(PGAContext *ctx, int p, int pop, int start,
int end)
{
int length, i, val;
unsigned power2;
PGADebugEntered("PGAGetIntegerFromBinary");
PGACheckDataType("PGAGetIntegerFromBinary", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (length > sizeof(int) * 8 - 1)
PGAError(ctx, "PGAGetIntegerFromBinary: length of bit string "
"exceeds sizeof type int:", PGA_FATAL, PGA_INT,
(void *) &length);
if (start < 0)
PGAError(ctx, "PGAGetIntegerFromBinary: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAGetIntegerFromBinary: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAGetIntegerFromBinary: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
val = 0;
power2 = 1u << (length - 1);
for (i = start; i <= end; i++)
{
if (PGAGetBinaryAllele(ctx, p, pop, i))
val += power2;
power2 >>= 1;
}
PGADebugExited("PGAGetIntegerFromBinary");
return(val);
}
/*U****************************************************************************
PGAGetIntegerFromGrayCode - interpets a binary reflected Gray code sequence
as encoding an integer value and returns the integer value it represents.
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in the binary representation
end - ending bit position in the binary representation
Outputs:
The integer value encoded by the binary reflected Gray code sequence
Example:
Get an integer j from bits 10--29 of string p in population PGA_NEWPOP.
The string is encoded in Gray code.
PGAContext *ctx;
int j, p;
:
j = PGAGetIntegerFromGrayCode(ctx, p, PGA_NEWPOP, 10, 29);
****************************************************************************U*/
int PGAGetIntegerFromGrayCode(PGAContext *ctx, int p, int pop, int start,
int end)
{
int length, *BitString, i, val;
unsigned power2;
PGADebugEntered("PGAGetIntegerFromGrayCode");
PGACheckDataType("PGAGetIntegerFromGrayCode", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (length > sizeof(int) * 8 - 1)
PGAError(ctx, "PGAGetIntegerFromGrayCode: length of binary string "
"exceeds size of type int:", PGA_FATAL, PGA_INT,
(void *) &length);
if (start < 0)
PGAError(ctx, "PGAGetIntegerFromGrayCode: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAGetIntegerFromGrayCode: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAGetIntegerFromGrayCode: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
BitString = (int *) malloc(length * sizeof(int));
if (!BitString)
PGAError(ctx, "PGAGetIntegerFromGrayCode: No room for BitString",
PGA_FATAL, PGA_VOID, NULL);
BitString[0] = PGAGetBinaryAllele(ctx, p, pop, start);
for(i = 1; i < length; i++)
BitString[i] = BitString[i-1] ^ PGAGetBinaryAllele(ctx, p, pop,
start + i);
val = 0;
power2 = 1u << (length - 1);
for (i = 0; i < length; i++)
{
if (BitString[i])
val += power2;
power2 >>= 1;
}
free(BitString);
PGADebugExited("PGAGetIntegerFromGrayCode");
return(val);
}
/*U****************************************************************************
PGAEncodeIntegerAsBinary - encodes an integer value as a binary string
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in p to encode val in
end - ending bit position in p to encode val in
val - the integer value to be represented as a binary string
Outputs:
The string is modified by side-effect.
Example:
Encode an integer v in 20 bits in bit positions 0--19 in string p
in population PGA_NEWPOP.
PGAContext *ctx;
int v, p;
:
PGAEncodeIntegerAsBinary(ctx, p, PGA_NEWPOP, 0, 19, v);
****************************************************************************U*/
void PGAEncodeIntegerAsBinary(PGAContext *ctx, int p, int pop, int start,
int end, int val)
{
int length, i;
unsigned power2;
PGADebugEntered("PGAEncodeIntegerAsBinary");
PGACheckDataType("PGAEncodeIntegerAsBinary", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (length > sizeof(int) * 8 - 1)
PGAError(ctx, "PGAEncodeIntegerAsBinary: length of bit string "
"exceeds size of type int:", PGA_FATAL, PGA_INT,
(void *) &length);
if (start < 0)
PGAError(ctx, "PGAEncodeIntegerAsBinary: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAEncodeIntegerAsBinary: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAEncodeIntegerAsBinary: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
if ((val > (1u << length) - 1) && (length != sizeof(int) * 8) - 1)
PGAError(ctx, "PGAEncodeIntegerAsBinary: Integer too big for string "
"length:", PGA_FATAL, PGA_INT, (void *) &val);
if (val < 0)
PGAError(ctx, "PGAEncodeIntegerAsBinary: Integer less than zero:",
PGA_FATAL, PGA_INT, (void *) & val);
power2 = 1u << (length - 1);
for (i = 0; i < length; i++)
{
if (val >= power2)
{
PGASetBinaryAllele(ctx, p, pop, start + i, 1);
val -= power2;
}
else
PGASetBinaryAllele(ctx, p, pop, start + i, 0);
power2 >>= 1;
}
PGADebugExited("PGAEncodeIntegerAsBinary");
}
/*U****************************************************************************
PGAEncodeIntegerAsGrayCode - encodes a real value as a binary reflected
Gray code sequence
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
start - starting bit position in p to encode val in
end - ending bit position in p to encode val in
val - the integer value to be represented as a binary reflected
Gray code sequence
Outputs:
The string is modified by side-effect.
Example:
Encode an integer v in 20 bits in bit positions 0--19 in string p in
population PGA_NEWPOP using Gray code.
PGAContext *ctx;
int v, p;
:
PGAEncodeIntegerAsGrayCode(ctx, p, PGA_NEWPOP, 0, 19, 7);
****************************************************************************U*/
void PGAEncodeIntegerAsGrayCode(PGAContext *ctx, int p, int pop, int start,
int end, int val)
{
int i, *bit, length;
unsigned power2;
PGADebugEntered("PGAEncodeIntegerAsGrayCode");
PGACheckDataType("PGAEncodeIntegerAsGrayCode", PGA_DATATYPE_BINARY);
length = end - start + 1;
if (length > sizeof(int) * 8 - 1)
PGAError(ctx, "PGAEncodeIntegerAsGrayCode: length of bit string"
"exceeds size of type int:", PGA_FATAL, PGA_INT,
(void *) &length);
if (start < 0)
PGAError(ctx, "PGAEncodeIntegerAsGrayCode: start less than 0:",
PGA_FATAL, PGA_INT, (void *) &start);
if (end >= PGAGetStringLength(ctx))
PGAError(ctx, "PGAEncodeIntegerAsGrayCode: end greater than string "
"length:", PGA_FATAL, PGA_INT, (void *) &end);
if (start >= end)
PGAError(ctx, "PGAEncodeIntegerAsGrayCode: start exceeds end:",
PGA_FATAL, PGA_INT, (void *) &start);
if ((val > (1u << length) - 1) && (length != sizeof(int) * 8 - 1))
PGAError(ctx, "PGAEncodeIntegerAsGrayCode: Integer too big for "
"string length:", PGA_FATAL, PGA_INT, (void *) &val);
if (val < 0)
PGAError(ctx, "PGAEncodeIntegerAsGrayCode: Integer less than zero:",
PGA_FATAL, PGA_INT, (void *) &val);
bit = (int *) malloc(length * sizeof(int));
if (bit == NULL)
PGAError(ctx, "PGAEncodeIntegerAsGrayCode: No room to allocate bit",
PGA_FATAL, PGA_VOID, NULL);
power2 = 1u << (length - 1);
for (i = 0; i < length; i++)
{
if (val >= power2)
{
bit[i] = 1;
val -= power2;
}
else
bit[i] = 0;
power2 >>= 1;
}
PGASetBinaryAllele(ctx, p, pop, start, bit[0]);
for(i = 1; i < length; i++)
PGASetBinaryAllele(ctx, p, pop, start + i, bit[i-1] ^ bit[i]);
free(bit);
PGADebugExited("PGAEncodeIntegerAsGrayCode");
}
/*I****************************************************************************
PGAMapIntegerToReal - Maps the value v defined on [a,b] to r defined on
[l,u]. In the context of PGAPack [a,b] is the discrete interval
[0,2^nbits-1] (i.e., the number of bits in a binary string) and [l,u]
represent the range of possible values of the real number r.
Inputs:
ctx - context variable
v - value from original interval (usually the decoded bit string)
a - lower bound of integer interval (usually 0)
b - upper bound of integer interval (usually 2^nbits-1)
l - lower bound of real interval
u - upper bound of real interval
Outputs:
Scaled value of v defined on [l,u]
Example:
Map a five bit (that is, an integer with a range of [0, 31]) integer v
to a real in the range [0, 3.14].
PGAContext *ctx;
double x;
int v;
:
x = PGAMapIntegerToReal(ctx, v, 0, 31, 0.0, 3.14);
****************************************************************************I*/
double PGAMapIntegerToReal (PGAContext *ctx, int v, int a, int b, double l,
double u)
{
PGADebugEntered("PGAMapIntegerToReal");
PGADebugExited("PGAMapIntegerToReal");
return((v-a) * (u-l) / (b-a) + l);
}
/*I****************************************************************************
PGAMapRealToInteger - Maps the value r defined on [l,u] to v defined on
[a,b]. In the context of PGAPack [a,b] is the discrete interval
[0,2^nbits-1] (i.e., the number of bits in a binary string) and [l,u]
represent the range of possible values of the real number r.
Inputs:
ctx - context variable
r - real value defined on [l,u]
l - lower bound of real interval
u - upper bound of real interval
a - lower bound of integer interval (usually 0)
b - upper bound of integer interval (usually 2^nbits-1)
Outputs:
Scaled value of r defined on [a,b]
Example:
Map the value r on the interval [0, 3.14] to a five bit integer v.
PGAContext *ctx;
double r;
int v;
:
v = PGAMapRealToInteger(ctx, r, 0.0, 3.14, 0, 31);
****************************************************************************I*/
int PGAMapRealToInteger(PGAContext *ctx, double r, double l, double u, int a,
int b)
{
PGADebugEntered("PGAMapRealToInteger");
PGADebugExited("PGAMapRealToInteger");
return PGARound(ctx, (b - a) * (r - l) / (u - l) + a);
}