blob: 5ef6c03b6f6a0776f64202f8d17511a49024096d [file] [log] [blame]
/*********************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
************************************************************/
#ifndef SINGA_MODEL_OPERATION_CONVOLUTION_H_
#define SINGA_MODEL_OPERATION_CONVOLUTION_H_
#include <string>
#include <vector>
#include "singa/core/tensor.h"
#include "singa/singa_config.h"
#include "singa/utils/logging.h"
#ifdef USE_CUDNN
#include <cudnn.h>
#include "../layer/cudnn_utils.h"
#endif // USE_CUDNN
#ifdef USE_DNNL
#include <singa/utils/dnnl_utils.h>
#endif // USE_DNNL
namespace singa {
class ConvHandle {
public:
ConvHandle(const Tensor &input, const std::vector<size_t> &kernel_size,
const std::vector<size_t> &stride,
const std::vector<size_t> &padding, const size_t in_channels,
const size_t out_channels, const bool bias,
const size_t groups = 1);
~ConvHandle();
size_t kernel_w;
size_t pad_w;
size_t stride_w;
size_t kernel_h;
size_t pad_h;
size_t stride_h;
size_t channels;
size_t num_filters;
size_t group;
bool bias_term;
size_t height;
size_t width;
size_t conv_height;
size_t conv_width;
size_t batchsize;
size_t col_height;
size_t col_width;
size_t imagesize;
bool use_dnnl =
false; // useful flag if both USE_CUDNN and USE_DNNL are enabled
#ifdef USE_DNNL
dnnl::memory::data_type dtype;
dnnl::memory::dims b_dims;
dnnl::memory::dims s_dims;
dnnl::memory::dims p_dims;
dnnl::memory::dims x_dims;
dnnl::memory::dims o_dims;
dnnl::memory::dims w_dims;
Tensor *db;
#endif // USE_DNNL
};
Tensor CpuConvForward(const Tensor &x, Tensor &W, Tensor &b,
const ConvHandle &ch);
Tensor CpuConvBackwardx(const Tensor &dy, Tensor &W, const Tensor &x,
const ConvHandle &ch);
Tensor CpuConvBackwardW(const Tensor &dy, const Tensor &x, const Tensor &W,
const ConvHandle &ch);
Tensor CpuConvBackwardb(const Tensor &dy, const Tensor &b,
const ConvHandle &ch);
#ifdef USE_CUDNN
class CudnnConvHandle : public ConvHandle {
public:
CudnnConvHandle(const Tensor &input, const std::vector<size_t> &kernel_size,
const std::vector<size_t> &stride,
const std::vector<size_t> &padding, const size_t in_channels,
const size_t out_channels, const bool bias,
const size_t groups = 1,
const size_t workspace_byte_limit = 1024 * 1024 * 1024,
const std::string &prefer = "fastest");
~CudnnConvHandle();
// TODO(wangwei) add the destructor
cudnnTensorDescriptor_t x_desc = nullptr;
cudnnTensorDescriptor_t y_desc = nullptr;
cudnnTensorDescriptor_t bias_desc = nullptr;
cudnnFilterDescriptor_t filter_desc = nullptr;
cudnnConvolutionDescriptor_t conv_desc = nullptr;
cudnnConvolutionFwdAlgo_t fp_alg;
cudnnConvolutionBwdFilterAlgo_t bp_filter_alg;
cudnnConvolutionBwdDataAlgo_t bp_data_alg;
size_t workspace_count;
Tensor workspace;
size_t channels_per_filter;
};
Tensor GpuConvForward(const Tensor &x, const Tensor &W, const Tensor &b,
const CudnnConvHandle &cch);
Tensor GpuConvBackwardx(const Tensor &dy, const Tensor &W, const Tensor &x,
const CudnnConvHandle &cch);
Tensor GpuConvBackwardW(const Tensor &dy, const Tensor &x, const Tensor &W,
const CudnnConvHandle &cch);
Tensor GpuConvBackwardb(const Tensor &dy, const Tensor &b,
const CudnnConvHandle &cch);
#endif // USE_CUDNN
} // namespace singa
#endif // SINGA_MODEL_OPERATION_CONVOLUTION_H_