| /********************************************************* |
| * |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| * |
| ************************************************************/ |
| #ifndef SINGA_MODEL_OPERATION_BATCHNORM_H_ |
| #define SINGA_MODEL_OPERATION_BATCHNORM_H_ |
| |
| #include <vector> |
| |
| #include "singa/core/tensor.h" |
| |
| #ifdef USE_CUDNN |
| #include <cudnn.h> |
| |
| #include "../layer/cudnn_utils.h" // check_cudnn |
| #endif // USE_CUDNN |
| |
| #ifdef USE_DNNL |
| #include <singa/utils/dnnl_utils.h> |
| |
| // combine scale and bias into weight format required by dnnl |
| static inline singa::Tensor get_bn_weight_from(const singa::Tensor &s, |
| const singa::Tensor &b) { |
| singa::Tensor w(singa::Shape{s.Size(), b.Size()}); |
| CopyDataToFrom(&w, s, s.Size(), 0, 0); |
| CopyDataToFrom(&w, b, b.Size(), s.Size(), 0); |
| return w; |
| } |
| #endif // USE_DNNL |
| |
| namespace singa { |
| |
| class BatchNormHandle { |
| public: |
| BatchNormHandle(const float momentum, const Tensor &input); |
| ~BatchNormHandle(); |
| |
| float factor; |
| |
| size_t batchsize; |
| size_t channels; |
| size_t height; |
| size_t width; |
| bool is_2d; |
| // bool train = true; |
| bool use_dnnl = |
| false; // useful flag if both USE_CUDNN and USE_DNNL are enabled |
| |
| #ifdef USE_DNNL |
| float epsilon; |
| dnnl::memory::dims x_dims; |
| dnnl::memory::desc x_md; |
| // as no default constructor, we need to declare it as pointer |
| dnnl::batch_normalization_forward::desc *bn_fwd_training_d; |
| dnnl::batch_normalization_forward::primitive_desc *bn_fwd_training_pd; |
| #endif // USE_DNNL |
| }; |
| |
| #ifdef USE_DNNL |
| Tensor CpuBatchNormForwardInference(const BatchNormHandle &bnh, const Tensor &x, |
| const Tensor &bnScale, const Tensor &bnBias, |
| Tensor &running_mean, Tensor &running_var); |
| |
| const std::vector<Tensor> CpuBatchNormForwardTraining( |
| const BatchNormHandle &bnh, const Tensor &x, const Tensor &bnScale, |
| const Tensor &bnBias, Tensor &running_mean, Tensor &running_var); |
| |
| const std::vector<Tensor> CpuBatchNormBackwardx( |
| const BatchNormHandle &bnh, const Tensor &y, const Tensor &dy, |
| const Tensor &x, const Tensor &bnScale, const Tensor &bnBias, |
| const Tensor &mean, const Tensor &var); |
| #endif // USE_DNNL |
| |
| #ifdef USE_CUDNN |
| |
| class CudnnBatchNormHandle : public BatchNormHandle { |
| public: |
| CudnnBatchNormHandle(const float momentum, const Tensor &input); |
| |
| //~CudnnBatchNormHandle(); |
| |
| cudnnBatchNormMode_t mode; |
| cudnnTensorDescriptor_t shape_desc = nullptr; |
| cudnnTensorDescriptor_t param_desc = nullptr; |
| }; |
| |
| const std::vector<Tensor> GpuBatchNormForwardTraining( |
| const CudnnBatchNormHandle &cbnh, const Tensor &x, const Tensor &bnScale, |
| const Tensor &bnBias, Tensor &running_mean, Tensor &running_var); |
| |
| Tensor GpuBatchNormForwardInference(const CudnnBatchNormHandle &cbnh, |
| const Tensor &x, const Tensor &bnScale, |
| const Tensor &bnBias, |
| const Tensor &running_mean, |
| const Tensor &running_var); |
| |
| const std::vector<Tensor> GpuBatchNormBackward( |
| const CudnnBatchNormHandle &cbnh, const Tensor &dy, const Tensor &x, |
| const Tensor &bnScale, const Tensor &mean, const Tensor &var); |
| |
| #endif // USE_CUDNN |
| |
| } // namespace singa |
| |
| #endif // SINGA_MODEL_OPERATION_BATCHNORM_H_ |