| /** | |
| * Licensed to the Apache Software Foundation (ASF) under one | |
| * or more contributor license agreements. See the NOTICE file | |
| * distributed with this work for additional information | |
| * regarding copyright ownership. The ASF licenses this file | |
| * to you under the Apache License, Version 2.0 (the | |
| * "License"); you may not use this file except in compliance | |
| * with the License. You may obtain a copy of the License at | |
| * | |
| * http://www.apache.org/licenses/LICENSE-2.0 | |
| * | |
| * Unless required by applicable law or agreed to in writing, software | |
| * distributed under the License is distributed on an "AS IS" BASIS, | |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| * See the License for the specific language governing permissions and | |
| * limitations under the License. | |
| */ | |
| #include "./dense.h" | |
| #include "singa/model/layer.h" | |
| #include <vector> | |
| namespace singa { | |
| using std::vector; | |
| RegisterLayerClass(singa_dense, Dense); | |
| RegisterLayerClass(singacpp_dense, Dense); | |
| RegisterLayerClass(singacuda_dense, Dense); | |
| RegisterLayerClass(singacl_dense, Dense); | |
| Dense::~Dense() { | |
| // delete weight_; | |
| // delete bias_; | |
| } | |
| void Dense::Setup(const Shape& in_sample, const LayerConf &conf) { | |
| Layer::Setup(in_sample, conf); | |
| auto dense_conf = conf.dense_conf(); | |
| CHECK_EQ(in_sample.size(), 1u); | |
| vdim_ = in_sample.at(0); | |
| hdim_ = dense_conf.num_output(); | |
| transpose_ = dense_conf.transpose(); | |
| bias_term_ = dense_conf.bias_term(); | |
| if (transpose_) // was {vdim_, hdim} by zhaojing? | |
| weight_.Resize(Shape{hdim_, vdim_}); | |
| else | |
| weight_.Resize(Shape{vdim_, hdim_}); | |
| if (bias_term_) | |
| bias_.Resize(Shape{hdim_}); | |
| for (auto specs: conf.param()) | |
| param_specs_.push_back(specs); | |
| } | |
| /// \copydoc Layer::Forward(int flag, const Tensor&) | |
| const Tensor Dense::Forward(int flag, const Tensor &input) { | |
| CHECK(buf_.empty()); | |
| Tensor output; | |
| CHECK_EQ(input.nDim(), 2u); | |
| if (transpose_) // use the transposed version of weight_ for computing | |
| output = Mult(input, Transpose(weight_)); | |
| else | |
| output = Mult(input, weight_); | |
| if (bias_term_) | |
| AddRow(bias_, &output); | |
| if (flag & kTrain) | |
| buf_.push(input); | |
| return output; | |
| } | |
| /// \copydoc Layer::Backward(int, const Tensor&, const Tensor&); | |
| const std::pair<Tensor, vector<Tensor>> Dense::Backward(int flag, | |
| const Tensor &grad) { | |
| vector<Tensor> param_grad; | |
| CHECK(!buf_.empty()); | |
| Tensor src_data = buf_.top(); | |
| buf_.pop(); | |
| Tensor db, dw, dx; | |
| dw.ResetLike(weight_); | |
| dx.ResetLike(src_data); | |
| if (bias_term_) { | |
| db.ResetLike(bias_); | |
| SumRows(grad, &db); | |
| } | |
| if (transpose_) { | |
| dx = Mult(grad, weight_); | |
| dw = Mult(Transpose(grad), src_data); | |
| } else { | |
| dx = Mult(grad, Transpose(weight_)); | |
| dw = Mult(Transpose(src_data), grad); | |
| } | |
| param_grad.push_back(dw); | |
| if (bias_term_) | |
| param_grad.push_back(db); | |
| return std::make_pair(dx, param_grad); | |
| } | |
| void Dense::ToDevice(std::shared_ptr<Device> device) { | |
| Layer::ToDevice(device); | |
| weight_.ToDevice(device); | |
| bias_.ToDevice(device); | |
| } | |
| } // namespace singa |