blob: 69f2ffdd9142ff579dcb55c5ae25d41fcb8cec51 [file] [log] [blame]
// half - IEEE 754-based half-precision floating-point library.
//
// Copyright (c) 2012-2019 Christian Rau <rauy@users.sourceforge.net>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// Version 2.1.0
/// \file
/// Main header file for half-precision functionality.
#ifndef HALF_HALF_HPP
#define HALF_HALF_HPP
#define HALF_GCC_VERSION (__GNUC__*100+__GNUC_MINOR__)
#if defined(__INTEL_COMPILER)
#define HALF_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICC)
#define HALF_ICC_VERSION __ICC
#elif defined(__ICL)
#define HALF_ICC_VERSION __ICL
#else
#define HALF_ICC_VERSION 0
#endif
// check C++11 language features
#if defined(__clang__) // clang
#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if __has_feature(cxx_thread_local) && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#elif HALF_ICC_VERSION && defined(__INTEL_CXX11_MODE__) // Intel C++
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#elif defined(__GNUC__) // gcc
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
#if HALF_GCC_VERSION >= 408 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if HALF_GCC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#endif
#define HALF_TWOS_COMPLEMENT_INT 1
#elif defined(_MSC_VER) // Visual C++
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#define HALF_TWOS_COMPLEMENT_INT 1
#define HALF_POP_WARNINGS 1
#pragma warning(push)
#pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned
#endif
// check C++11 library features
#include <utility>
#if defined(_LIBCPP_VERSION) // libc++
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#ifndef HALF_ENABLE_CPP11_CSTDINT
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#ifndef HALF_ENABLE_CPP11_CMATH
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#ifndef HALF_ENABLE_CPP11_HASH
#define HALF_ENABLE_CPP11_HASH 1
#endif
#ifndef HALF_ENABLE_CPP11_CFENV
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#endif
#elif defined(__GLIBCXX__) // libstdc++
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
#ifdef __clang__
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CFENV)
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#else
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CFENV)
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#endif
#endif
#elif defined(_CPPLIB_VER) // Dinkumware/Visual C++
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CFENV)
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#endif
#undef HALF_GCC_VERSION
#undef HALF_ICC_VERSION
// any error throwing C++ exceptions?
#if defined(HALF_ERRHANDLING_THROW_INVALID) || defined(HALF_ERRHANDLING_THROW_DIVBYZERO) || defined(HALF_ERRHANDLING_THROW_OVERFLOW) || defined(HALF_ERRHANDLING_THROW_UNDERFLOW) || defined(HALF_ERRHANDLING_THROW_INEXACT)
#define HALF_ERRHANDLING_THROWS 1
#endif
// any error handling enabled?
#define HALF_ERRHANDLING (HALF_ERRHANDLING_FLAGS||HALF_ERRHANDLING_ERRNO||HALF_ERRHANDLING_FENV||HALF_ERRHANDLING_THROWS)
#if HALF_ERRHANDLING
#define HALF_UNUSED_NOERR(name) name
#else
#define HALF_UNUSED_NOERR(name)
#endif
// support constexpr
#if HALF_ENABLE_CPP11_CONSTEXPR
#define HALF_CONSTEXPR constexpr
#define HALF_CONSTEXPR_CONST constexpr
#if HALF_ERRHANDLING
#define HALF_CONSTEXPR_NOERR
#else
#define HALF_CONSTEXPR_NOERR constexpr
#endif
#else
#define HALF_CONSTEXPR
#define HALF_CONSTEXPR_CONST const
#define HALF_CONSTEXPR_NOERR
#endif
// support noexcept
#if HALF_ENABLE_CPP11_NOEXCEPT
#define HALF_NOEXCEPT noexcept
#define HALF_NOTHROW noexcept
#else
#define HALF_NOEXCEPT
#define HALF_NOTHROW throw()
#endif
// support thread storage
#if HALF_ENABLE_CPP11_THREAD_LOCAL
#define HALF_THREAD_LOCAL thread_local
#else
#define HALF_THREAD_LOCAL static
#endif
#include <utility>
#include <algorithm>
#include <istream>
#include <ostream>
#include <limits>
#include <stdexcept>
#include <climits>
#include <cmath>
#include <cstring>
#include <cstdlib>
#if HALF_ENABLE_CPP11_TYPE_TRAITS
#include <type_traits>
#endif
#if HALF_ENABLE_CPP11_CSTDINT
#include <cstdint>
#endif
#if HALF_ERRHANDLING_ERRNO
#include <cerrno>
#endif
#if HALF_ENABLE_CPP11_CFENV
#include <cfenv>
#endif
#if HALF_ENABLE_CPP11_HASH
#include <functional>
#endif
#if HALF_ENABLE_F16C_INTRINSICS
#include <immintrin.h>
#endif
#ifndef HALF_ENABLE_F16C_INTRINSICS
/// Enable F16C intruction set intrinsics.
/// Defining this to 1 enables the use of [F16C compiler intrinsics](https://en.wikipedia.org/wiki/F16C) for converting between
/// half-precision and single-precision values which may result in improved performance. This will not perform additional checks
/// for support of the F16C instruction set, so an appropriate target platform is required when enabling this feature.
///
/// Unless predefined it will be enabled automatically when the `__F16C__` symbol is defined, which some compilers do on supporting platforms.
#define HALF_ENABLE_F16C_INTRINSICS __F16C__
#endif
#ifdef HALF_DOXYGEN_ONLY
/// Type for internal floating-point computations.
/// This can be predefined to a built-in floating-point type (`float`, `double` or `long double`) to override the internal
/// half-precision implementation to use this type for computing arithmetic operations and mathematical function (if available).
/// This can result in improved performance for arithmetic operators and mathematical functions but might cause results to
/// deviate from the specified half-precision rounding mode and inhibits proper detection of half-precision exceptions.
#define HALF_ARITHMETIC_TYPE (undefined)
/// Enable internal exception flags.
/// Defining this to 1 causes operations on half-precision values to raise internal floating-point exception flags according to
/// the IEEE 754 standard. These can then be cleared and checked with clearexcept(), testexcept().
#define HALF_ERRHANDLING_FLAGS 0
/// Enable exception propagation to `errno`.
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to
/// [errno](https://en.cppreference.com/w/cpp/error/errno) from `<cerrno>`. Specifically this will propagate domain errors as
/// [EDOM](https://en.cppreference.com/w/cpp/error/errno_macros) and pole, overflow and underflow errors as
/// [ERANGE](https://en.cppreference.com/w/cpp/error/errno_macros). Inexact errors won't be propagated.
#define HALF_ERRHANDLING_ERRNO 0
/// Enable exception propagation to built-in floating-point platform.
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to the built-in
/// single- and double-precision implementation's exception flags using the
/// [C++11 floating-point environment control](https://en.cppreference.com/w/cpp/numeric/fenv) from `<cfenv>`. However, this
/// does not work in reverse and single- or double-precision exceptions will not raise the corresponding half-precision
/// exception flags, nor will explicitly clearing flags clear the corresponding built-in flags.
#define HALF_ERRHANDLING_FENV 0
/// Throw C++ exception on domain errors.
/// Defining this to a string literal causes operations on half-precision values to throw a
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on domain errors.
#define HALF_ERRHANDLING_THROW_INVALID (undefined)
/// Throw C++ exception on pole errors.
/// Defining this to a string literal causes operations on half-precision values to throw a
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on pole errors.
#define HALF_ERRHANDLING_THROW_DIVBYZERO (undefined)
/// Throw C++ exception on overflow errors.
/// Defining this to a string literal causes operations on half-precision values to throw a
/// [std::overflow_error](https://en.cppreference.com/w/cpp/error/overflow_error) with the specified message on overflows.
#define HALF_ERRHANDLING_THROW_OVERFLOW (undefined)
/// Throw C++ exception on underflow errors.
/// Defining this to a string literal causes operations on half-precision values to throw a
/// [std::underflow_error](https://en.cppreference.com/w/cpp/error/underflow_error) with the specified message on underflows.
#define HALF_ERRHANDLING_THROW_UNDERFLOW (undefined)
/// Throw C++ exception on rounding errors.
/// Defining this to 1 causes operations on half-precision values to throw a
/// [std::range_error](https://en.cppreference.com/w/cpp/error/range_error) with the specified message on general rounding errors.
#define HALF_ERRHANDLING_THROW_INEXACT (undefined)
#endif
#ifndef HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
/// Raise INEXACT exception on overflow.
/// Defining this to 1 (default) causes overflow errors to automatically raise inexact exceptions in addition.
/// These will be raised after any possible handling of the underflow exception.
#define HALF_ERRHANDLING_OVERFLOW_TO_INEXACT 1
#endif
#ifndef HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
/// Raise INEXACT exception on underflow.
/// Defining this to 1 (default) causes underflow errors to automatically raise inexact exceptions in addition.
/// These will be raised after any possible handling of the underflow exception.
///
/// **Note:** This will actually cause underflow (and the accompanying inexact) exceptions to be raised *only* when the result
/// is inexact, while if disabled bare underflow errors will be raised for *any* (possibly exact) subnormal result.
#define HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT 1
#endif
/// Default rounding mode.
/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and more precise types
/// (unless using half_cast() and specifying the rounding mode directly) as well as in arithmetic operations and mathematical
/// functions. It can be redefined (before including half.hpp) to one of the standard rounding modes using their respective
/// constants or the equivalent values of
/// [std::float_round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/float_round_style):
///
/// `std::float_round_style` | value | rounding
/// ---------------------------------|-------|-------------------------
/// `std::round_indeterminate` | -1 | fastest
/// `std::round_toward_zero` | 0 | toward zero
/// `std::round_to_nearest` | 1 | to nearest (default)
/// `std::round_toward_infinity` | 2 | toward positive infinity
/// `std::round_toward_neg_infinity` | 3 | toward negative infinity
///
/// By default this is set to `1` (`std::round_to_nearest`), which rounds results to the nearest representable value. It can even
/// be set to [std::numeric_limits<float>::round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/round_style) to synchronize
/// the rounding mode with that of the built-in single-precision implementation (which is likely `std::round_to_nearest`, though).
#ifndef HALF_ROUND_STYLE
#define HALF_ROUND_STYLE 1 // = std::round_to_nearest
#endif
/// Value signaling overflow.
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an
/// operation, in particular it just evaluates to positive infinity.
///
/// **See also:** Documentation for [HUGE_VAL](https://en.cppreference.com/w/cpp/numeric/math/HUGE_VAL)
#define HUGE_VALH std::numeric_limits<half_float::half>::infinity()
/// Fast half-precision fma function.
/// This symbol is defined if the fma() function generally executes as fast as, or faster than, a separate
/// half-precision multiplication followed by an addition, which is always the case.
///
/// **See also:** Documentation for [FP_FAST_FMA](https://en.cppreference.com/w/cpp/numeric/math/fma)
#define FP_FAST_FMAH 1
/// Half rounding mode.
/// In correspondence with `FLT_ROUNDS` from `<cfloat>` this symbol expands to the rounding mode used for
/// half-precision operations. It is an alias for [HALF_ROUND_STYLE](\ref HALF_ROUND_STYLE).
///
/// **See also:** Documentation for [FLT_ROUNDS](https://en.cppreference.com/w/cpp/types/climits/FLT_ROUNDS)
#define HLF_ROUNDS HALF_ROUND_STYLE
#ifndef FP_ILOGB0
#define FP_ILOGB0 INT_MIN
#endif
#ifndef FP_ILOGBNAN
#define FP_ILOGBNAN INT_MAX
#endif
#ifndef FP_SUBNORMAL
#define FP_SUBNORMAL 0
#endif
#ifndef FP_ZERO
#define FP_ZERO 1
#endif
#ifndef FP_NAN
#define FP_NAN 2
#endif
#ifndef FP_INFINITE
#define FP_INFINITE 3
#endif
#ifndef FP_NORMAL
#define FP_NORMAL 4
#endif
#if !HALF_ENABLE_CPP11_CFENV && !defined(FE_ALL_EXCEPT)
#define FE_INVALID 0x10
#define FE_DIVBYZERO 0x08
#define FE_OVERFLOW 0x04
#define FE_UNDERFLOW 0x02
#define FE_INEXACT 0x01
#define FE_ALL_EXCEPT (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT)
#endif
/// Main namespace for half-precision functionality.
/// This namespace contains all the functionality provided by the library.
namespace half_float
{
class half;
#if HALF_ENABLE_CPP11_USER_LITERALS
/// Library-defined half-precision literals.
/// Import this namespace to enable half-precision floating-point literals:
/// ~~~~{.cpp}
/// using namespace half_float::literal;
/// half_float::half = 4.2_h;
/// ~~~~
namespace literal
{
half operator "" _h(long double);
}
#endif
/// \internal
/// \brief Implementation details.
namespace detail
{
#if HALF_ENABLE_CPP11_TYPE_TRAITS
/// Conditional type.
template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {};
/// Helper for tag dispatching.
template<bool B> struct bool_type : std::integral_constant<bool,B> {};
using std::true_type;
using std::false_type;
/// Type traits for floating-point types.
template<typename T> struct is_float : std::is_floating_point<T> {};
#else
/// Conditional type.
template<bool,typename T,typename> struct conditional { typedef T type; };
template<typename T,typename F> struct conditional<false,T,F> { typedef F type; };
/// Helper for tag dispatching.
template<bool> struct bool_type {};
typedef bool_type<true> true_type;
typedef bool_type<false> false_type;
/// Type traits for floating-point types.
template<typename> struct is_float : false_type {};
template<typename T> struct is_float<const T> : is_float<T> {};
template<typename T> struct is_float<volatile T> : is_float<T> {};
template<typename T> struct is_float<const volatile T> : is_float<T> {};
template<> struct is_float<float> : true_type {};
template<> struct is_float<double> : true_type {};
template<> struct is_float<long double> : true_type {};
#endif
/// Type traits for floating-point bits.
template<typename T> struct bits { typedef unsigned char type; };
template<typename T> struct bits<const T> : bits<T> {};
template<typename T> struct bits<volatile T> : bits<T> {};
template<typename T> struct bits<const volatile T> : bits<T> {};
#if HALF_ENABLE_CPP11_CSTDINT
/// Unsigned integer of (at least) 16 bits width.
typedef std::uint_least16_t uint16;
/// Fastest unsigned integer of (at least) 32 bits width.
typedef std::uint_fast32_t uint32;
/// Fastest signed integer of (at least) 32 bits width.
typedef std::int_fast32_t int32;
/// Unsigned integer of (at least) 32 bits width.
template<> struct bits<float> { typedef std::uint_least32_t type; };
/// Unsigned integer of (at least) 64 bits width.
template<> struct bits<double> { typedef std::uint_least64_t type; };
#else
/// Unsigned integer of (at least) 16 bits width.
typedef unsigned short uint16;
/// Fastest unsigned integer of (at least) 32 bits width.
typedef unsigned long uint32;
/// Fastest unsigned integer of (at least) 32 bits width.
typedef long int32;
/// Unsigned integer of (at least) 32 bits width.
template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {};
#if HALF_ENABLE_CPP11_LONG_LONG
/// Unsigned integer of (at least) 64 bits width.
template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {};
#else
/// Unsigned integer of (at least) 64 bits width.
template<> struct bits<double> { typedef unsigned long type; };
#endif
#endif
#ifdef HALF_ARITHMETIC_TYPE
/// Type to use for arithmetic computations and mathematic functions internally.
typedef HALF_ARITHMETIC_TYPE internal_t;
#endif
/// Tag type for binary construction.
struct binary_t {};
/// Tag for binary construction.
HALF_CONSTEXPR_CONST binary_t binary = binary_t();
/// \name Implementation defined classification and arithmetic
/// \{
/// Check for infinity.
/// \tparam T argument type (builtin floating-point type)
/// \param arg value to query
/// \retval true if infinity
/// \retval false else
template<typename T> bool builtin_isinf(T arg)
{
#if HALF_ENABLE_CPP11_CMATH
return std::isinf(arg);
#elif defined(_MSC_VER)
return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg));
#else
return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity();
#endif
}
/// Check for NaN.
/// \tparam T argument type (builtin floating-point type)
/// \param arg value to query
/// \retval true if not a number
/// \retval false else
template<typename T> bool builtin_isnan(T arg)
{
#if HALF_ENABLE_CPP11_CMATH
return std::isnan(arg);
#elif defined(_MSC_VER)
return ::_isnan(static_cast<double>(arg)) != 0;
#else
return arg != arg;
#endif
}
/// Check sign.
/// \tparam T argument type (builtin floating-point type)
/// \param arg value to query
/// \retval true if signbit set
/// \retval false else
template<typename T> bool builtin_signbit(T arg)
{
#if HALF_ENABLE_CPP11_CMATH
return std::signbit(arg);
#else
return arg < T() || (arg == T() && T(1)/arg < T());
#endif
}
/// Platform-independent sign mask.
/// \param arg integer value in two's complement
/// \retval -1 if \a arg negative
/// \retval 0 if \a arg positive
inline uint32 sign_mask(uint32 arg)
{
static const int N = std::numeric_limits<uint32>::digits - 1;
#if HALF_TWOS_COMPLEMENT_INT
return static_cast<int32>(arg) >> N;
#else
return -((arg>>N)&1);
#endif
}
/// Platform-independent arithmetic right shift.
/// \param arg integer value in two's complement
/// \param i shift amount (at most 31)
/// \return \a arg right shifted for \a i bits with possible sign extension
inline uint32 arithmetic_shift(uint32 arg, int i)
{
#if HALF_TWOS_COMPLEMENT_INT
return static_cast<int32>(arg) >> i;
#else
return static_cast<int32>(arg)/(static_cast<int32>(1)<<i) - ((arg>>(std::numeric_limits<uint32>::digits-1))&1);
#endif
}
/// \}
/// \name Error handling
/// \{
/// Internal exception flags.
/// \return reference to global exception flags
inline int& errflags() { HALF_THREAD_LOCAL int flags = 0; return flags; }
/// Raise floating-point exception.
/// \param flags exceptions to raise
/// \param cond condition to raise exceptions for
inline void raise(int HALF_UNUSED_NOERR(flags), bool HALF_UNUSED_NOERR(cond) = true)
{
#if HALF_ERRHANDLING
if(!cond)
return;
#if HALF_ERRHANDLING_FLAGS
errflags() |= flags;
#endif
#if HALF_ERRHANDLING_ERRNO
if(flags & FE_INVALID)
errno = EDOM;
else if(flags & (FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW))
errno = ERANGE;
#endif
#if HALF_ERRHANDLING_FENV && HALF_ENABLE_CPP11_CFENV
std::feraiseexcept(flags);
#endif
#ifdef HALF_ERRHANDLING_THROW_INVALID
if(flags & FE_INVALID)
throw std::domain_error(HALF_ERRHANDLING_THROW_INVALID);
#endif
#ifdef HALF_ERRHANDLING_THROW_DIVBYZERO
if(flags & FE_DIVBYZERO)
throw std::domain_error(HALF_ERRHANDLING_THROW_DIVBYZERO);
#endif
#ifdef HALF_ERRHANDLING_THROW_OVERFLOW
if(flags & FE_OVERFLOW)
throw std::overflow_error(HALF_ERRHANDLING_THROW_OVERFLOW);
#endif
#ifdef HALF_ERRHANDLING_THROW_UNDERFLOW
if(flags & FE_UNDERFLOW)
throw std::underflow_error(HALF_ERRHANDLING_THROW_UNDERFLOW);
#endif
#ifdef HALF_ERRHANDLING_THROW_INEXACT
if(flags & FE_INEXACT)
throw std::range_error(HALF_ERRHANDLING_THROW_INEXACT);
#endif
#if HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
if((flags & FE_UNDERFLOW) && !(flags & FE_INEXACT))
raise(FE_INEXACT);
#endif
#if HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
if((flags & FE_OVERFLOW) && !(flags & FE_INEXACT))
raise(FE_INEXACT);
#endif
#endif
}
/// Check and signal for any NaN.
/// \param x first half-precision value to check
/// \param y second half-precision value to check
/// \retval true if either \a x or \a y is NaN
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool compsignal(unsigned int x, unsigned int y)
{
#if HALF_ERRHANDLING
raise(FE_INVALID, (x&0x7FFF)>0x7C00 || (y&0x7FFF)>0x7C00);
#endif
return (x&0x7FFF) > 0x7C00 || (y&0x7FFF) > 0x7C00;
}
/// Signal and silence signaling NaN.
/// \param nan half-precision NaN value
/// \return quiet NaN
/// \exception FE_INVALID if \a nan is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int nan)
{
#if HALF_ERRHANDLING
raise(FE_INVALID, !(nan&0x200));
#endif
return nan | 0x200;
}
/// Signal and silence signaling NaNs.
/// \param x first half-precision value to check
/// \param y second half-precision value to check
/// \return quiet NaN
/// \exception FE_INVALID if \a x or \a y is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y)
{
#if HALF_ERRHANDLING
raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)));
#endif
return ((x&0x7FFF)>0x7C00) ? (x|0x200) : (y|0x200);
}
/// Signal and silence signaling NaNs.
/// \param x first half-precision value to check
/// \param y second half-precision value to check
/// \param z third half-precision value to check
/// \return quiet NaN
/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y, unsigned int z)
{
#if HALF_ERRHANDLING
raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)) || ((z&0x7FFF)>0x7C00 && !(z&0x200)));
#endif
return ((x&0x7FFF)>0x7C00) ? (x|0x200) : ((y&0x7FFF)>0x7C00) ? (y|0x200) : (z|0x200);
}
/// Select value or signaling NaN.
/// \param x preferred half-precision value
/// \param y ignored half-precision value except for signaling NaN
/// \return \a y if signaling NaN, \a x otherwise
/// \exception FE_INVALID if \a y is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int select(unsigned int x, unsigned int HALF_UNUSED_NOERR(y))
{
#if HALF_ERRHANDLING
return (((y&0x7FFF)>0x7C00) && !(y&0x200)) ? signal(y) : x;
#else
return x;
#endif
}
/// Raise domain error and return NaN.
/// return quiet NaN
/// \exception FE_INVALID
inline HALF_CONSTEXPR_NOERR unsigned int invalid()
{
#if HALF_ERRHANDLING
raise(FE_INVALID);
#endif
return 0x7FFF;
}
/// Raise pole error and return infinity.
/// \param sign half-precision value with sign bit only
/// \return half-precision infinity with sign of \a sign
/// \exception FE_DIVBYZERO
inline HALF_CONSTEXPR_NOERR unsigned int pole(unsigned int sign = 0)
{
#if HALF_ERRHANDLING
raise(FE_DIVBYZERO);
#endif
return sign | 0x7C00;
}
/// Check value for underflow.
/// \param arg non-zero half-precision value to check
/// \return \a arg
/// \exception FE_UNDERFLOW if arg is subnormal
inline HALF_CONSTEXPR_NOERR unsigned int check_underflow(unsigned int arg)
{
#if HALF_ERRHANDLING && !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
raise(FE_UNDERFLOW, !(arg&0x7C00));
#endif
return arg;
}
/// \}
/// \name Conversion and rounding
/// \{
/// Half-precision overflow.
/// \tparam R rounding mode to use
/// \param sign half-precision value with sign bit only
/// \return rounded overflowing half-precision value
/// \exception FE_OVERFLOW
template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int overflow(unsigned int sign = 0)
{
#if HALF_ERRHANDLING
raise(FE_OVERFLOW);
#endif
return (R==std::round_toward_infinity) ? (sign+0x7C00-(sign>>15)) :
(R==std::round_toward_neg_infinity) ? (sign+0x7BFF+(sign>>15)) :
(R==std::round_toward_zero) ? (sign|0x7BFF) :
(sign|0x7C00);
}
/// Half-precision underflow.
/// \tparam R rounding mode to use
/// \param sign half-precision value with sign bit only
/// \return rounded underflowing half-precision value
/// \exception FE_UNDERFLOW
template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int underflow(unsigned int sign = 0)
{
#if HALF_ERRHANDLING
raise(FE_UNDERFLOW);
#endif
return (R==std::round_toward_infinity) ? (sign+1-(sign>>15)) :
(R==std::round_toward_neg_infinity) ? (sign+(sign>>15)) :
sign;
}
/// Round half-precision number.
/// \tparam R rounding mode to use
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
/// \param value finite half-precision number to round
/// \param g guard bit (most significant discarded bit)
/// \param s sticky bit (or of all but the most significant discarded bits)
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
template<std::float_round_style R,bool I> HALF_CONSTEXPR_NOERR unsigned int rounded(unsigned int value, int g, int s)
{
#if HALF_ERRHANDLING
value += (R==std::round_to_nearest) ? (g&(s|value)) :
(R==std::round_toward_infinity) ? (~(value>>15)&(g|s)) :
(R==std::round_toward_neg_infinity) ? ((value>>15)&(g|s)) : 0;
if((value&0x7C00) == 0x7C00)
raise(FE_OVERFLOW);
else if(value & 0x7C00)
raise(FE_INEXACT, I || (g|s)!=0);
else
raise(FE_UNDERFLOW, !(HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT) || I || (g|s)!=0);
return value;
#else
return (R==std::round_to_nearest) ? (value+(g&(s|value))) :
(R==std::round_toward_infinity) ? (value+(~(value>>15)&(g|s))) :
(R==std::round_toward_neg_infinity) ? (value+((value>>15)&(g|s))) :
value;
#endif
}
/// Round half-precision number to nearest integer value.
/// \tparam R rounding mode to use
/// \tparam E `true` for round to even, `false` for round away from zero
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
/// \param value half-precision value to round
/// \return half-precision bits for nearest integral value
/// \exception FE_INVALID for signaling NaN
/// \exception FE_INEXACT if value had to be rounded and \a I is `true`
template<std::float_round_style R,bool E,bool I> unsigned int integral(unsigned int value)
{
unsigned int abs = value & 0x7FFF;
if(abs < 0x3C00)
{
raise(FE_INEXACT, I);
return ((R==std::round_to_nearest) ? (0x3C00&-static_cast<unsigned>(abs>=(0x3800+E))) :
(R==std::round_toward_infinity) ? (0x3C00&-(~(value>>15)&(abs!=0))) :
(R==std::round_toward_neg_infinity) ? (0x3C00&-static_cast<unsigned>(value>0x8000)) :
0) | (value&0x8000);
}
if(abs >= 0x6400)
return (abs>0x7C00) ? signal(value) : value;
unsigned int exp = 25 - (abs>>10), mask = (1<<exp) - 1;
raise(FE_INEXACT, I && (value&mask));
return (( (R==std::round_to_nearest) ? ((1<<(exp-1))-(~(value>>exp)&E)) :
(R==std::round_toward_infinity) ? (mask&((value>>15)-1)) :
(R==std::round_toward_neg_infinity) ? (mask&-(value>>15)) :
0) + value) & ~mask;
}
/// Convert fixed point to half-precision floating-point.
/// \tparam R rounding mode to use
/// \tparam F number of fractional bits (at least 11)
/// \tparam S `true` for signed, `false` for unsigned
/// \tparam N `true` for additional normalization step, `false` if already normalized to 1.F
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
/// \param m mantissa in Q1.F fixed point format
/// \param exp exponent
/// \param sign half-precision value with sign bit only
/// \param s sticky bit (or of all but the most significant already discarded bits)
/// \return value converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
template<std::float_round_style R,unsigned int F,bool S,bool N,bool I> unsigned int fixed2half(uint32 m, int exp = 14, unsigned int sign = 0, int s = 0)
{
if(S)
{
uint32 msign = sign_mask(m);
m = (m^msign) - msign;
sign = msign & 0x8000;
}
if(N)
for(; m<(static_cast<uint32>(1)<<F) && exp; m<<=1,--exp) ;
else if(exp < 0)
return rounded<R,I>(sign+(m>>(F-10-exp)), (m>>(F-11-exp))&1, s|((m&((static_cast<uint32>(1)<<(F-11-exp))-1))!=0));
return rounded<R,I>(sign+(exp<<10)+(m>>(F-10)), (m>>(F-11))&1, s|((m&((static_cast<uint32>(1)<<(F-11))-1))!=0));
}
/// Convert IEEE single-precision to half-precision.
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
/// \tparam R rounding mode to use
/// \param value single-precision value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template<std::float_round_style R> unsigned int float2half_impl(float value, true_type)
{
#if HALF_ENABLE_F16C_INTRINSICS
return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(value),
(R==std::round_to_nearest) ? _MM_FROUND_TO_NEAREST_INT :
(R==std::round_toward_zero) ? _MM_FROUND_TO_ZERO :
(R==std::round_toward_infinity) ? _MM_FROUND_TO_POS_INF :
(R==std::round_toward_neg_infinity) ? _MM_FROUND_TO_NEG_INF :
_MM_FROUND_CUR_DIRECTION));
#else
bits<float>::type fbits;
std::memcpy(&fbits, &value, sizeof(float));
#if 1
unsigned int sign = (fbits>>16) & 0x8000;
fbits &= 0x7FFFFFFF;
if(fbits >= 0x7F800000)
return sign | 0x7C00 | ((fbits>0x7F800000) ? (0x200|((fbits>>13)&0x3FF)) : 0);
if(fbits >= 0x47800000)
return overflow<R>(sign);
if(fbits >= 0x38800000)
return rounded<R,false>(sign|(((fbits>>23)-112)<<10)|((fbits>>13)&0x3FF), (fbits>>12)&1, (fbits&0xFFF)!=0);
if(fbits >= 0x33000000)
{
int i = 125 - (fbits>>23);
fbits = (fbits&0x7FFFFF) | 0x800000;
return rounded<R,false>(sign|(fbits>>(i+1)), (fbits>>i)&1, (fbits&((static_cast<uint32>(1)<<i)-1))!=0);
}
if(fbits != 0)
return underflow<R>(sign);
return sign;
#else
static const uint16 base_table[512] = {
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100,
0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00,
0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7C00,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100,
0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00,
0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFC00 };
static const unsigned char shift_table[256] = {
24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 };
int sexp = fbits >> 23, exp = sexp & 0xFF, i = shift_table[exp];
fbits &= 0x7FFFFF;
uint32 m = (fbits|((exp!=0)<<23)) & -static_cast<uint32>(exp!=0xFF);
return rounded<R,false>(base_table[sexp]+(fbits>>i), (m>>(i-1))&1, (((static_cast<uint32>(1)<<(i-1))-1)&m)!=0);
#endif
#endif
}
/// Convert IEEE double-precision to half-precision.
/// \tparam R rounding mode to use
/// \param value double-precision value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template<std::float_round_style R> unsigned int float2half_impl(double value, true_type)
{
#if HALF_ENABLE_F16C_INTRINSICS
if(R == std::round_indeterminate)
return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_cvtpd_ps(_mm_set_sd(value)), _MM_FROUND_CUR_DIRECTION));
#endif
bits<double>::type dbits;
std::memcpy(&dbits, &value, sizeof(double));
uint32 hi = dbits >> 32, lo = dbits & 0xFFFFFFFF;
unsigned int sign = (hi>>16) & 0x8000;
hi &= 0x7FFFFFFF;
if(hi >= 0x7FF00000)
return sign | 0x7C00 | ((dbits&0xFFFFFFFFFFFFF) ? (0x200|((hi>>10)&0x3FF)) : 0);
if(hi >= 0x40F00000)
return overflow<R>(sign);
if(hi >= 0x3F100000)
return rounded<R,false>(sign|(((hi>>20)-1008)<<10)|((hi>>10)&0x3FF), (hi>>9)&1, ((hi&0x1FF)|lo)!=0);
if(hi >= 0x3E600000)
{
int i = 1018 - (hi>>20);
hi = (hi&0xFFFFF) | 0x100000;
return rounded<R,false>(sign|(hi>>(i+1)), (hi>>i)&1, ((hi&((static_cast<uint32>(1)<<i)-1))|lo)!=0);
}
if((hi|lo) != 0)
return underflow<R>(sign);
return sign;
}
/// Convert non-IEEE floating-point to half-precision.
/// \tparam R rounding mode to use
/// \tparam T source type (builtin floating-point type)
/// \param value floating-point value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template<std::float_round_style R,typename T> unsigned int float2half_impl(T value, ...)
{
unsigned int hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;
if(value == T())
return hbits;
if(builtin_isnan(value))
return hbits | 0x7FFF;
if(builtin_isinf(value))
return hbits | 0x7C00;
int exp;
std::frexp(value, &exp);
if(exp > 16)
return overflow<R>(hbits);
if(exp < -13)
value = std::ldexp(value, 25);
else
{
value = std::ldexp(value, 12-exp);
hbits |= ((exp+13)<<10);
}
T ival, frac = std::modf(value, &ival);
int m = std::abs(static_cast<int>(ival));
return rounded<R,false>(hbits+(m>>1), m&1, frac!=T());
}
/// Convert floating-point to half-precision.
/// \tparam R rounding mode to use
/// \tparam T source type (builtin floating-point type)
/// \param value floating-point value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template<std::float_round_style R,typename T> unsigned int float2half(T value)
{
return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
}
/// Convert integer to half-precision floating-point.
/// \tparam R rounding mode to use
/// \tparam T type to convert (builtin integer type)
/// \param value integral value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_INEXACT if value had to be rounded
template<std::float_round_style R,typename T> unsigned int int2half(T value)
{
unsigned int bits = static_cast<unsigned>(value<0) << 15;
if(!value)
return bits;
if(bits)
value = -value;
if(value > 0xFFFF)
return overflow<R>(bits);
unsigned int m = static_cast<unsigned int>(value), exp = 24;
for(; m<0x400; m<<=1,--exp) ;
for(; m>0x7FF; m>>=1,++exp) ;
bits |= (exp<<10) + m;
return (exp>24) ? rounded<R,false>(bits, (value>>(exp-25))&1, (((1<<(exp-25))-1)&value)!=0) : bits;
}
/// Convert half-precision to IEEE single-precision.
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
/// \param value half-precision value to convert
/// \return single-precision value
inline float half2float_impl(unsigned int value, float, true_type)
{
#if HALF_ENABLE_F16C_INTRINSICS
return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(value)));
#else
#if 0
bits<float>::type fbits = static_cast<bits<float>::type>(value&0x8000) << 16;
int abs = value & 0x7FFF;
if(abs)
{
fbits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
for(; abs<0x400; abs<<=1,fbits-=0x800000) ;
fbits += static_cast<bits<float>::type>(abs) << 13;
}
#else
static const bits<float>::type mantissa_table[2048] = {
0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000,
0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000,
0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000,
0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000,
0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000,
0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000,
0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000,
0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000,
0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000,
0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000,
0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000,
0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000,
0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000,
0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000,
0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000,
0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000,
0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000,
0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000,
0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000,
0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000,
0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000,
0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000,
0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000,
0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000,
0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000,
0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000,
0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000,
0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000,
0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000,
0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000,
0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000,
0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000,
0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000,
0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000,
0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000,
0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000,
0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000,
0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000,
0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000,
0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000,
0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000,
0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000,
0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000,
0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000,
0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000,
0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000,
0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000,
0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000,
0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000,
0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000,
0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000,
0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000,
0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000,
0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000,
0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000,
0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000,
0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000,
0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000,
0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000,
0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000,
0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000,
0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000,
0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000,
0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000,
0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000,
0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000,
0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000,
0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000,
0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000,
0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000,
0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000,
0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000,
0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000,
0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000,
0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000,
0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000,
0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000,
0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000,
0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000,
0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000,
0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000,
0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000,
0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000,
0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000,
0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000,
0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000,
0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000,
0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000,
0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000,
0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000,
0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000,
0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000,
0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000,
0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000,
0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000,
0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000,
0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000,
0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000,
0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000,
0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000,
0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000,
0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000,
0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000,
0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000,
0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000,
0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000,
0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000,
0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000,
0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000,
0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000,
0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000,
0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000,
0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000,
0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000,
0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000,
0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000,
0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000,
0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000,
0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000,
0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000,
0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000,
0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000,
0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000,
0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000,
0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000,
0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000,
0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000,
0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 };
static const bits<float>::type exponent_table[64] = {
0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000,
0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000,
0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000,
0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 };
static const unsigned short offset_table[64] = {
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 };
bits<float>::type fbits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10];
#endif
float out;
std::memcpy(&out, &fbits, sizeof(float));
return out;
#endif
}
/// Convert half-precision to IEEE double-precision.
/// \param value half-precision value to convert
/// \return double-precision value
inline double half2float_impl(unsigned int value, double, true_type)
{
#if HALF_ENABLE_F16C_INTRINSICS
return _mm_cvtsd_f64(_mm_cvtps_pd(_mm_cvtph_ps(_mm_cvtsi32_si128(value))));
#else
uint32 hi = static_cast<uint32>(value&0x8000) << 16;
unsigned int abs = value & 0x7FFF;
if(abs)
{
hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00);
for(; abs<0x400; abs<<=1,hi-=0x100000) ;
hi += static_cast<uint32>(abs) << 10;
}
bits<double>::type dbits = static_cast<bits<double>::type>(hi) << 32;
double out;
std::memcpy(&out, &dbits, sizeof(double));
return out;
#endif
}
/// Convert half-precision to non-IEEE floating-point.
/// \tparam T type to convert to (builtin integer type)
/// \param value half-precision value to convert
/// \return floating-point value
template<typename T> T half2float_impl(unsigned int value, T, ...)
{
T out;
unsigned int abs = value & 0x7FFF;
if(abs > 0x7C00)
out = (std::numeric_limits<T>::has_signaling_NaN && !(abs&0x200)) ? std::numeric_limits<T>::signaling_NaN() :
std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T();
else if(abs == 0x7C00)
out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max();
else if(abs > 0x3FF)
out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25);
else
out = std::ldexp(static_cast<T>(abs), -24);
return (value&0x8000) ? -out : out;
}
/// Convert half-precision to floating-point.
/// \tparam T type to convert to (builtin integer type)
/// \param value half-precision value to convert
/// \return floating-point value
template<typename T> T half2float(unsigned int value)
{
return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
}
/// Convert half-precision floating-point to integer.
/// \tparam R rounding mode to use
/// \tparam E `true` for round to even, `false` for round away from zero
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
/// \param value half-precision value to convert
/// \return rounded integer value
/// \exception FE_INVALID if value is not representable in type \a T
/// \exception FE_INEXACT if value had to be rounded and \a I is `true`
template<std::float_round_style R,bool E,bool I,typename T> T half2int(unsigned int value)
{
unsigned int abs = value & 0x7FFF;
if(abs >= 0x7C00)
{
raise(FE_INVALID);
return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max();
}
if(abs < 0x3800)
{
raise(FE_INEXACT, I);
return (R==std::round_toward_infinity) ? T(~(value>>15)&(abs!=0)) :
(R==std::round_toward_neg_infinity) ? -T(value>0x8000) :
T();
}
int exp = 25 - (abs>>10);
unsigned int m = (value&0x3FF) | 0x400;
int32 i = static_cast<int32>((exp<=0) ? (m<<-exp) : ((m+(
(R==std::round_to_nearest) ? ((1<<(exp-1))-(~(m>>exp)&E)) :
(R==std::round_toward_infinity) ? (((1<<exp)-1)&((value>>15)-1)) :
(R==std::round_toward_neg_infinity) ? (((1<<exp)-1)&-(value>>15)) : 0))>>exp));
if((!std::numeric_limits<T>::is_signed && (value&0x8000)) || (std::numeric_limits<T>::digits<16 &&
((value&0x8000) ? (-i<std::numeric_limits<T>::min()) : (i>std::numeric_limits<T>::max()))))
raise(FE_INVALID);
else if(I && exp > 0 && (m&((1<<exp)-1)))
raise(FE_INEXACT);
return static_cast<T>((value&0x8000) ? -i : i);
}
/// \}
/// \name Mathematics
/// \{
/// upper part of 64-bit multiplication.
/// \tparam R rounding mode to use
/// \param x first factor
/// \param y second factor
/// \return upper 32 bit of \a x * \a y
template<std::float_round_style R> uint32 mulhi(uint32 x, uint32 y)
{
uint32 xy = (x>>16) * (y&0xFFFF), yx = (x&0xFFFF) * (y>>16), c = (xy&0xFFFF) + (yx&0xFFFF) + (((x&0xFFFF)*(y&0xFFFF))>>16);
return (x>>16)*(y>>16) + (xy>>16) + (yx>>16) + (c>>16) +
((R==std::round_to_nearest) ? ((c>>15)&1) : (R==std::round_toward_infinity) ? ((c&0xFFFF)!=0) : 0);
}
/// 64-bit multiplication.
/// \param x first factor
/// \param y second factor
/// \return upper 32 bit of \a x * \a y rounded to nearest
inline uint32 multiply64(uint32 x, uint32 y)
{
#if HALF_ENABLE_CPP11_LONG_LONG
return static_cast<uint32>((static_cast<unsigned long long>(x)*static_cast<unsigned long long>(y)+0x80000000)>>32);
#else
return mulhi<std::round_to_nearest>(x, y);
#endif
}
/// 64-bit division.
/// \param x upper 32 bit of dividend
/// \param y divisor
/// \param s variable to store sticky bit for rounding
/// \return (\a x << 32) / \a y
inline uint32 divide64(uint32 x, uint32 y, int &s)
{
#if HALF_ENABLE_CPP11_LONG_LONG
unsigned long long xx = static_cast<unsigned long long>(x) << 32;
return s = (xx%y!=0), static_cast<uint32>(xx/y);
#else
y >>= 1;
uint32 rem = x, div = 0;
for(unsigned int i=0; i<32; ++i)
{
div <<= 1;
if(rem >= y)
{
rem -= y;
div |= 1;
}
rem <<= 1;
}
return s = rem > 1, div;
#endif
}
/// Half precision positive modulus.
/// \tparam Q `true` to compute full quotient, `false` else
/// \tparam R `true` to compute signed remainder, `false` for positive remainder
/// \param x first operand as positive finite half-precision value
/// \param y second operand as positive finite half-precision value
/// \param quo adress to store quotient at, `nullptr` if \a Q `false`
/// \return modulus of \a x / \a y
template<bool Q,bool R> unsigned int mod(unsigned int x, unsigned int y, int *quo = NULL)
{
unsigned int q = 0;
if(x > y)
{
int absx = x, absy = y, expx = 0, expy = 0;
for(; absx<0x400; absx<<=1,--expx) ;
for(; absy<0x400; absy<<=1,--expy) ;
expx += absx >> 10;
expy += absy >> 10;
int mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
for(int d=expx-expy; d; --d)
{
if(!Q && mx == my)
return 0;
if(mx >= my)
{
mx -= my;
q += Q;
}
mx <<= 1;
q <<= static_cast<int>(Q);
}
if(!Q && mx == my)
return 0;
if(mx >= my)
{
mx -= my;
++q;
}
if(Q)
{
q &= (1<<(std::numeric_limits<int>::digits-1)) - 1;
if(!mx)
return *quo = q, 0;
}
for(; mx<0x400; mx<<=1,--expy) ;
x = (expy>0) ? ((expy<<10)|(mx&0x3FF)) : (mx>>(1-expy));
}
if(R)
{
unsigned int a, b;
if(y < 0x800)
{
a = (x<0x400) ? (x<<1) : (x+0x400);
b = y;
}
else
{
a = x;
b = y - 0x400;
}
if(a > b || (a == b && (q&1)))
{
int exp = (y>>10) + (y<=0x3FF), d = exp - (x>>10) - (x<=0x3FF);
int m = (((y&0x3FF)|((y>0x3FF)<<10))<<1) - (((x&0x3FF)|((x>0x3FF)<<10))<<(1-d));
for(; m<0x800 && exp>1; m<<=1,--exp) ;
x = 0x8000 + ((exp-1)<<10) + (m>>1);
q += Q;
}
}
if(Q)
*quo = q;
return x;
}
/// Fixed point square root.
/// \tparam F number of fractional bits
/// \param r radicand in Q1.F fixed point format
/// \param exp exponent
/// \return square root as Q1.F/2
template<unsigned int F> uint32 sqrt(uint32 &r, int &exp)
{
int i = exp & 1;
r <<= i;
exp = (exp-i) / 2;
uint32 m = 0;
for(uint32 bit=static_cast<uint32>(1)<<F; bit; bit>>=2)
{
if(r < m+bit)
m >>= 1;
else
{
r -= m + bit;
m = (m>>1) + bit;
}
}
return m;
}
/// Fixed point binary exponential.
/// This uses the BKM algorithm in E-mode.
/// \param m exponent in [0,1) as Q0.31
/// \param n number of iterations (at most 32)
/// \return 2 ^ \a m as Q1.31
inline uint32 exp2(uint32 m, unsigned int n = 32)
{
static const uint32 logs[] = {
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
if(!m)
return 0x80000000;
uint32 mx = 0x80000000, my = 0;
for(unsigned int i=1; i<n; ++i)
{
uint32 mz = my + logs[i];
if(mz <= m)
{
my = mz;
mx += mx >> i;
}
}
return mx;
}
/// Fixed point binary logarithm.
/// This uses the BKM algorithm in L-mode.
/// \param m mantissa in [1,2) as Q1.30
/// \param n number of iterations (at most 32)
/// \return log2(\a m) as Q0.31
inline uint32 log2(uint32 m, unsigned int n = 32)
{
static const uint32 logs[] = {
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
if(m == 0x40000000)
return 0;
uint32 mx = 0x40000000, my = 0;
for(unsigned int i=1; i<n; ++i)
{
uint32 mz = mx + (mx>>i);
if(mz <= m)
{
mx = mz;
my += logs[i];
}
}
return my;
}
/// Fixed point sine and cosine.
/// This uses the CORDIC algorithm in rotation mode.
/// \param mz angle in [-pi/2,pi/2] as Q1.30
/// \param n number of iterations (at most 31)
/// \return sine and cosine of \a mz as Q1.30
inline std::pair<uint32,uint32> sincos(uint32 mz, unsigned int n = 31)
{
static const uint32 angles[] = {
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
uint32 mx = 0x26DD3B6A, my = 0;
for(unsigned int i=0; i<n; ++i)
{
uint32 sign = sign_mask(mz);
uint32 tx = mx - (arithmetic_shift(my, i)^sign) + sign;
uint32 ty = my + (arithmetic_shift(mx, i)^sign) - sign;
mx = tx; my = ty; mz -= (angles[i]^sign) - sign;
}
return std::make_pair(my, mx);
}
/// Fixed point arc tangent.
/// This uses the CORDIC algorithm in vectoring mode.
/// \param my y coordinate as Q0.30
/// \param mx x coordinate as Q0.30
/// \param n number of iterations (at most 31)
/// \return arc tangent of \a my / \a mx as Q1.30
inline uint32 atan2(uint32 my, uint32 mx, unsigned int n = 31)
{
static const uint32 angles[] = {
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
uint32 mz = 0;
for(unsigned int i=0; i<n; ++i)
{
uint32 sign = sign_mask(my);
uint32 tx = mx + (arithmetic_shift(my, i)^sign) - sign;
uint32 ty = my - (arithmetic_shift(mx, i)^sign) + sign;
mx = tx; my = ty; mz += (angles[i]^sign) - sign;
}
return mz;
}
/// Reduce argument for trigonometric functions.
/// \param abs half-precision floating-point value
/// \param k value to take quarter period
/// \return \a abs reduced to [-pi/4,pi/4] as Q0.30
inline uint32 angle_arg(unsigned int abs, int &k)
{
uint32 m = (abs&0x3FF) | ((abs>0x3FF)<<10);
int exp = (abs>>10) + (abs<=0x3FF) - 15;
if(abs < 0x3A48)
return k = 0, m << (exp+20);
#if HALF_ENABLE_CPP11_LONG_LONG
unsigned long long y = m * 0xA2F9836E4E442, mask = (1ULL<<(62-exp)) - 1, yi = (y+(mask>>1)) & ~mask, f = y - yi;
uint32 sign = -static_cast<uint32>(f>>63);
k = static_cast<int>(yi>>(62-exp));
return (multiply64(static_cast<uint32>((sign ? -f : f)>>(31-exp)), 0xC90FDAA2)^sign) - sign;
#else
uint32 yh = m*0xA2F98 + mulhi<std::round_toward_zero>(m, 0x36E4E442), yl = (m*0x36E4E442) & 0xFFFFFFFF;
uint32 mask = (static_cast<uint32>(1)<<(30-exp)) - 1, yi = (yh+(mask>>1)) & ~mask, sign = -static_cast<uint32>(yi>yh);
k = static_cast<int>(yi>>(30-exp));
uint32 fh = (yh^sign) + (yi^~sign) - ~sign, fl = (yl^sign) - sign;
return (multiply64((exp>-1) ? (((fh<<(1+exp))&0xFFFFFFFF)|((fl&0xFFFFFFFF)>>(31-exp))) : fh, 0xC90FDAA2)^sign) - sign;
#endif
}
/// Get arguments for atan2 function.
/// \param abs half-precision floating-point value
/// \return \a abs and sqrt(1 - \a abs^2) as Q0.30
inline std::pair<uint32,uint32> atan2_args(unsigned int abs)
{
int exp = -15;
for(; abs<0x400; abs<<=1,--exp) ;
exp += abs >> 10;
uint32 my = ((abs&0x3FF)|0x400) << 5, r = my * my;
int rexp = 2 * exp;
r = 0x40000000 - ((rexp>-31) ? ((r>>-rexp)|((r&((static_cast<uint32>(1)<<-rexp)-1))!=0)) : 1);
for(rexp=0; r<0x40000000; r<<=1,--rexp) ;
uint32 mx = sqrt<30>(r, rexp);
int d = exp - rexp;
if(d < 0)
return std::make_pair((d<-14) ? ((my>>(-d-14))+((my>>(-d-15))&1)) : (my<<(14+d)), (mx<<14)+(r<<13)/mx);
if(d > 0)
return std::make_pair(my<<14, (d>14) ? ((mx>>(d-14))+((mx>>(d-15))&1)) : ((d==14) ? mx : ((mx<<(14-d))+(r<<(13-d))/mx)));
return std::make_pair(my<<13, (mx<<13)+(r<<12)/mx);
}
/// Get exponentials for hyperbolic computation
/// \param abs half-precision floating-point value
/// \param exp variable to take unbiased exponent of larger result
/// \param n number of BKM iterations (at most 32)
/// \return exp(abs) and exp(-\a abs) as Q1.31 with same exponent
inline std::pair<uint32,uint32> hyperbolic_args(unsigned int abs, int &exp, unsigned int n = 32)
{
uint32 mx = detail::multiply64(static_cast<uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29), my;
int e = (abs>>10) + (abs<=0x3FF);
if(e < 14)
{
exp = 0;
mx >>= 14 - e;
}
else
{
exp = mx >> (45-e);
mx = (mx<<(e-14)) & 0x7FFFFFFF;
}
mx = exp2(mx, n);
int d = exp << 1, s;
if(mx > 0x80000000)
{
my = divide64(0x80000000, mx, s);
my |= s;
++d;
}
else
my = mx;
return std::make_pair(mx, (d<31) ? ((my>>d)|((my&((static_cast<uint32>(1)<<d)-1))!=0)) : 1);
}
/// Postprocessing for binary exponential.
/// \tparam R rounding mode to use
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
/// \param m mantissa as Q1.31
/// \param exp absolute value of unbiased exponent
/// \param esign sign of actual exponent
/// \param sign sign bit of result
/// \return value converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
template<std::float_round_style R,bool I> unsigned int exp2_post(uint32 m, int exp, bool esign, unsigned int sign = 0)
{
int s = 0;
if(esign)
{
if(m > 0x80000000)
{
m = divide64(0x80000000, m, s);
++exp;
}
if(exp > 25)
return underflow<R>(sign);
else if(exp == 25)
return rounded<R,I>(sign, 1, (m&0x7FFFFFFF)!=0);
exp = -exp;
}
else if(exp > 15)
return overflow<R>(sign);
return fixed2half<R,31,false,false,I>(m, exp+14, sign, s);
}
/// Postprocessing for binary logarithm.
/// \tparam R rounding mode to use
/// \tparam L logarithm for base transformation as Q1.31
/// \param m fractional part of logarithm as Q0.31
/// \param ilog signed integer part of logarithm
/// \param exp biased exponent of result
/// \param sign sign bit of result
/// \return value base-transformed and converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template<std::float_round_style R,uint32 L> unsigned int log2_post(uint32 m, int ilog, int exp, unsigned int sign = 0)
{
uint32 msign = sign_mask(ilog);
m = (((static_cast<uint32>(ilog)<<27)+(m>>4))^msign) - msign;
if(!m)
return 0;
for(; m<0x80000000; m<<=1,--exp) ;
int i = m >= L, s;
exp += i;
m >>= 1 + i;
sign ^= msign & 0x8000;
if(exp < -11)
return underflow<R>(sign);
m = divide64(m, L, s);
return fixed2half<R,30,false,false,true>(m, exp, sign, 1);
}
/// Hypotenuse square root and postprocessing.
/// \tparam R rounding mode to use
/// \param r mantissa as Q2.30
/// \param exp unbiased exponent
/// \return square root converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template<std::float_round_style R> unsigned int hypot_post(uint32 r, int exp)
{
int i = r >> 31;
if((exp+=i) > 46)
return overflow<R>();
if(exp < -34)
return underflow<R>();
r = (r>>i) | (r&i);
uint32 m = sqrt<30>(r, exp+=15);
return fixed2half<R,15,false,false,false>(m, exp-1, 0, r!=0);
}
/// Division and postprocessing for tangents.
/// \tparam R rounding mode to use
/// \param my dividend as Q1.31
/// \param mx divisor as Q1.31
/// \param exp biased exponent of result
/// \param sign sign bit of result
/// \return quotient converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template<std::float_round_style R> unsigned int tangent_post(uint32 my, uint32 mx, int exp, unsigned int sign = 0)
{
int i = my >= mx, s;
exp += i;
if(exp > 29)
return overflow<R>(sign);
if(exp < -11)
return underflow<R>(sign);
uint32 m = divide64(my>>(i+1), mx, s);
return fixed2half<R,30,false,false,true>(m, exp, sign, s);
}
/// Area function and postprocessing.
/// This computes the value directly in Q2.30 using the representation `asinh|acosh(x) = log(x+sqrt(x^2+|-1))`.
/// \tparam R rounding mode to use
/// \tparam S `true` for asinh, `false` for acosh
/// \param arg half-precision argument
/// \return asinh|acosh(\a arg) converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template<std::float_round_style R,bool S> unsigned int area(unsigned int arg)
{
int abs = arg & 0x7FFF, expx = (abs>>10) + (abs<=0x3FF) - 15, expy = -15, ilog, i;
uint32 mx = static_cast<uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << 20, my, r;
for(; abs<0x400; abs<<=1,--expy) ;
expy += abs >> 10;
r = ((abs&0x3FF)|0x400) << 5;
r *= r;
i = r >> 31;
expy = 2*expy + i;
r >>= i;
if(S)
{
if(expy < 0)
{
r = 0x40000000 + ((expy>-30) ? ((r>>-expy)|((r&((static_cast<uint32>(1)<<-expy)-1))!=0)) : 1);
expy = 0;
}
else
{
r += 0x40000000 >> expy;
i = r >> 31;
r = (r>>i) | (r&i);
expy += i;
}
}
else
{
r -= 0x40000000 >> expy;
for(; r<0x40000000; r<<=1,--expy) ;
}
my = sqrt<30>(r, expy);
my = (my<<15) + (r<<14)/my;
if(S)
{
mx >>= expy - expx;
ilog = expy;
}
else
{
my >>= expx - expy;
ilog = expx;
}
my += mx;
i = my >> 31;
static const int G = S && (R==std::round_to_nearest);
return log2_post<R,0xB8AA3B2A>(log2(my>>i, 26+S+G)+(G<<3), ilog+i, 17, arg&(static_cast<unsigned>(S)<<15));
}
/// Class for 1.31 unsigned floating-point computation
struct f31
{
/// Constructor.
/// \param mant mantissa as 1.31
/// \param e exponent
HALF_CONSTEXPR f31(uint32 mant, int e) : m(mant), exp(e) {}
/// Constructor.
/// \param abs unsigned half-precision value
f31(unsigned int abs) : exp(-15)
{
for(; abs<0x400; abs<<=1,--exp) ;
m = static_cast<uint32>((abs&0x3FF)|0x400) << 21;
exp += (abs>>10);
}
/// Addition operator.
/// \param a first operand
/// \param b second operand
/// \return \a a + \a b
friend f31 operator+(f31 a, f31 b)
{
if(b.exp > a.exp)
std::swap(a, b);
int d = a.exp - b.exp;
uint32 m = a.m + ((d<32) ? (b.m>>d) : 0);
int i = (m&0xFFFFFFFF) < a.m;
return f31(((m+i)>>i)|0x80000000, a.exp+i);
}
/// Subtraction operator.
/// \param a first operand
/// \param b second operand
/// \return \a a - \a b
friend f31 operator-(f31 a, f31 b)
{
int d = a.exp - b.exp, exp = a.exp;
uint32 m = a.m - ((d<32) ? (b.m>>d) : 0);
if(!m)
return f31(0, -32);
for(; m<0x80000000; m<<=1,--exp) ;
return f31(m, exp);
}
/// Multiplication operator.
/// \param a first operand
/// \param b second operand
/// \return \a a * \a b
friend f31 operator*(f31 a, f31 b)
{
uint32 m = multiply64(a.m, b.m);
int i = m >> 31;
return f31(m<<(1-i), a.exp + b.exp + i);
}
/// Division operator.
/// \param a first operand
/// \param b second operand
/// \return \a a / \a b
friend f31 operator/(f31 a, f31 b)
{
int i = a.m >= b.m, s;
uint32 m = divide64((a.m+i)>>i, b.m, s);
return f31(m, a.exp - b.exp + i - 1);
}
uint32 m; ///< mantissa as 1.31.
int exp; ///< exponent.
};
/// Error function and postprocessing.
/// This computes the value directly in Q1.31 using the approximations given
/// [here](https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions).
/// \tparam R rounding mode to use
/// \tparam C `true` for comlementary error function, `false` else
/// \param arg half-precision function argument
/// \return approximated value of error function in half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template<std::float_round_style R,bool C> unsigned int erf(unsigned int arg)
{
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
f31 x(abs), x2 = x * x * f31(0xB8AA3B29, 0), t = f31(0x80000000, 0) / (f31(0x80000000, 0)+f31(0xA7BA054A, -2)*x), t2 = t * t;
f31 e = ((f31(0x87DC2213, 0)*t2+f31(0xB5F0E2AE, 0))*t2+f31(0x82790637, -2)-(f31(0xBA00E2B8, 0)*t2+f31(0x91A98E62, -2))*t) * t /
((x2.exp<0) ? f31(exp2((x2.exp>-32) ? (x2.m>>-x2.exp) : 0, 30), 0) : f31(exp2((x2.m<<x2.exp)&0x7FFFFFFF, 22), x2.m>>(31-x2.exp)));
return (!C || sign) ? fixed2half<R,31,false,true,true>(0x80000000-(e.m>>(C-e.exp)), 14+C, sign&(C-1U)) :
(e.exp<-25) ? underflow<R>() : fixed2half<R,30,false,false,true>(e.m>>1, e.exp+14, 0, e.m&1);
}
/// Gamma function and postprocessing.
/// This approximates the value of either the gamma function or its logarithm directly in Q1.31.
/// \tparam R rounding mode to use
/// \tparam L `true` for lograithm of gamma function, `false` for gamma function
/// \param arg half-precision floating-point value
/// \return lgamma/tgamma(\a arg) in half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if \a arg is not a positive integer
template<std::float_round_style R,bool L> unsigned int gamma(unsigned int arg)
{
/* static const double p[] ={ 2.50662827563479526904, 225.525584619175212544, -268.295973841304927459, 80.9030806934622512966, -5.00757863970517583837, 0.0114684895434781459556 };
double t = arg + 4.65, s = p[0];
for(unsigned int i=0; i<5; ++i)
s += p[i+1] / (arg+i);
return std::log(s) + (arg-0.5)*std::log(t) - t;
*/ static const f31 pi(0xC90FDAA2, 1), lbe(0xB8AA3B29, 0);
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
bool bsign = sign != 0;
f31 z(abs), x = sign ? (z+f31(0x80000000, 0)) : z, t = x + f31(0x94CCCCCD, 2), s =
f31(0xA06C9901, 1) + f31(0xBBE654E2, -7)/(x+f31(0x80000000, 2)) + f31(0xA1CE6098, 6)/(x+f31(0x80000000, 1))
+ f31(0xE1868CB7, 7)/x - f31(0x8625E279, 8)/(x+f31(0x80000000, 0)) - f31(0xA03E158F, 2)/(x+f31(0xC0000000, 1));
int i = (s.exp>=2) + (s.exp>=4) + (s.exp>=8) + (s.exp>=16);
s = f31((static_cast<uint32>(s.exp)<<(31-i))+(log2(s.m>>1, 28)>>i), i) / lbe;
if(x.exp != -1 || x.m != 0x80000000)
{
i = (t.exp>=2) + (t.exp>=4) + (t.exp>=8);
f31 l = f31((static_cast<uint32>(t.exp)<<(31-i))+(log2(t.m>>1, 30)>>i), i) / lbe;
s = (x.exp<-1) ? (s-(f31(0x80000000, -1)-x)*l) : (s+(x-f31(0x80000000, -1))*l);
}
s = x.exp ? (s-t) : (t-s);
if(bsign)
{
if(z.exp >= 0)
{
sign &= (L|((z.m>>(31-z.exp))&1)) - 1;
for(z=f31((z.m<<(1+z.exp))&0xFFFFFFFF, -1); z.m<0x80000000; z.m<<=1,--z.exp) ;
}
if(z.exp == -1)
z = f31(0x80000000, 0) - z;
if(z.exp < -1)
{
z = z * pi;
z.m = sincos(z.m>>(1-z.exp), 30).first;
for(z.exp=1; z.m<0x80000000; z.m<<=1,--z.exp) ;
}
else
z = f31(0x80000000, 0);
}
if(L)
{
if(bsign)
{
f31 l(0x92868247, 0);
if(z.exp < 0)
{
uint32 m = log2((z.m+1)>>1, 27);
z = f31(-((static_cast<uint32>(z.exp)<<26)+(m>>5)), 5);
for(; z.m<0x80000000; z.m<<=1,--z.exp) ;
l = l + z / lbe;
}
sign = static_cast<unsigned>(x.exp&&(l.exp<s.exp||(l.exp==s.exp&&l.m<s.m))) << 15;
s = sign ? (s-l) : x.exp ? (l-s) : (l+s);
}
else
{
sign = static_cast<unsigned>(x.exp==0) << 15;
if