| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| from __future__ import division |
| |
| import unittest |
| import numpy as np |
| |
| from singa import metric |
| from singa import tensor |
| |
| |
| class TestPrecision(unittest.TestCase): |
| def setUp(self): |
| x_np = np.asarray([[0.7, 0.2, 0.1], |
| [0.2, 0.4, 0.5], |
| [0.2, 0.4, 0.4]], |
| dtype=np.float32) |
| |
| y_np = np.asarray([[1, 0, 1], |
| [0, 1, 1], |
| [1, 0, 0]], |
| dtype=np.int32) |
| |
| self.prcs = metric.Precision(top_k=2) |
| self.x = tensor.from_numpy(x_np) |
| self.y = tensor.from_numpy(y_np) |
| |
| def test_forward(self): |
| p = self.prcs.forward(self.x, self.y) |
| self.assertAlmostEqual(tensor.to_numpy(p)[0], 0.5) |
| self.assertAlmostEqual(tensor.to_numpy(p)[1], 1) |
| self.assertAlmostEqual(tensor.to_numpy(p)[2], 0) |
| |
| def test_evaluate(self): |
| e = self.prcs.evaluate(self.x, self.y) |
| self.assertAlmostEqual(e, (0.5 + 1 + 0) / 3) |
| |
| |
| class TestRecall(unittest.TestCase): |
| def setUp(self): |
| x_np = np.asarray([[0.7, 0.2, 0.1], |
| [0.2, 0.4, 0.5], |
| [0.2, 0.4, 0.4]], |
| dtype=np.float32) |
| |
| y_np = np.asarray([[1, 0, 1], |
| [1, 1, 1], |
| [1, 0, 0]], |
| dtype=np.int32) |
| |
| self.recall = metric.Recall(top_k=2) |
| self.x = tensor.from_numpy(x_np) |
| self.y = tensor.from_numpy(y_np) |
| |
| def test_forward(self): |
| r = self.recall.forward(self.x, self.y) |
| self.assertAlmostEqual(tensor.to_numpy(r)[0], 0.5) |
| self.assertAlmostEqual(tensor.to_numpy(r)[1], 2.0 / 3) |
| self.assertAlmostEqual(tensor.to_numpy(r)[2], 0) |
| |
| def test_evaluate(self): |
| e = self.recall.evaluate(self.x, self.y) |
| self.assertAlmostEqual(e, (0.5 + (2.0 / 3) + 0) / 3) |
| |
| |
| if __name__ == '__main__': |
| unittest.main() |