blob: ce5e0489aee628553b898bd5fc9328d2075425a1 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
from singa import device
from singa import initializer
from singa import layer
from singa import loss
from singa import net as ffnet
from singa import optimizer
from singa import tensor
import argparse
import matplotlib.pyplot as plt
import numpy as np
import os
from utils import load_data
from utils import print_log
class VANILLA():
def __init__(self, dev, rows=28, cols=28, channels=1, noise_size=100, hidden_size=128, batch=128,
interval=1000, learning_rate=0.001, epochs=1000000, dataset_filepath='mnist.pkl.gz', file_dir='vanilla_images/'):
self.dev = dev
self.rows = rows
self.cols = cols
self.channels = channels
self.feature_size = self.rows * self.cols * self.channels
self.noise_size = noise_size
self.hidden_size = hidden_size
self.batch = batch
self.batch_size = self.batch//2
self.interval = interval
self.learning_rate = learning_rate
self.epochs = epochs
self.dataset_filepath = dataset_filepath
self.file_dir = file_dir
self.g_w0_specs = {'init': 'xavier',}
self.g_b0_specs = {'init': 'constant', 'value': 0,}
self.g_w1_specs = {'init': 'xavier',}
self.g_b1_specs = {'init': 'constant', 'value': 0,}
self.gen_net = ffnet.FeedForwardNet(loss.SigmoidCrossEntropy(),)
self.gen_net_fc_0 = layer.Dense(name='g_fc_0', num_output=self.hidden_size, use_bias=True,
W_specs=self.g_w0_specs, b_specs=self.g_b0_specs, input_sample_shape=(self.noise_size,))
self.gen_net_relu_0 = layer.Activation(name='g_relu_0', mode='relu',input_sample_shape=(self.hidden_size,))
self.gen_net_fc_1 = layer.Dense(name='g_fc_1', num_output=self.feature_size, use_bias=True,
W_specs=self.g_w1_specs, b_specs=self.g_b1_specs, input_sample_shape=(self.hidden_size,))
self.gen_net_sigmoid_1 = layer.Activation(name='g_relu_1', mode='sigmoid', input_sample_shape=(self.feature_size,))
self.gen_net.add(self.gen_net_fc_0)
self.gen_net.add(self.gen_net_relu_0)
self.gen_net.add(self.gen_net_fc_1)
self.gen_net.add(self.gen_net_sigmoid_1)
for (p, specs) in zip(self.gen_net.param_values(), self.gen_net.param_specs()):
filler = specs.filler
if filler.type == 'gaussian':
p.gaussian(filler.mean, filler.std)
elif filler.type == 'xavier':
initializer.xavier(p)
else:
p.set_value(0)
print(specs.name, filler.type, p.l1())
self.gen_net.to_device(self.dev)
self.d_w0_specs = {'init': 'xavier',}
self.d_b0_specs = {'init': 'constant', 'value': 0,}
self.d_w1_specs = {'init': 'xavier',}
self.d_b1_specs = {'init': 'constant', 'value': 0,}
self.dis_net = ffnet.FeedForwardNet(loss.SigmoidCrossEntropy(),)
self.dis_net_fc_0 = layer.Dense(name='d_fc_0', num_output=self.hidden_size, use_bias=True,
W_specs=self.d_w0_specs, b_specs=self.d_b0_specs, input_sample_shape=(self.feature_size,))
self.dis_net_relu_0 = layer.Activation(name='d_relu_0', mode='relu',input_sample_shape=(self.hidden_size,))
self.dis_net_fc_1 = layer.Dense(name='d_fc_1', num_output=1, use_bias=True,
W_specs=self.d_w1_specs, b_specs=self.d_b1_specs, input_sample_shape=(self.hidden_size,))
self.dis_net.add(self.dis_net_fc_0)
self.dis_net.add(self.dis_net_relu_0)
self.dis_net.add(self.dis_net_fc_1)
for (p, specs) in zip(self.dis_net.param_values(), self.dis_net.param_specs()):
filler = specs.filler
if filler.type == 'gaussian':
p.gaussian(filler.mean, filler.std)
elif filler.type == 'xavier':
initializer.xavier(p)
else:
p.set_value(0)
print(specs.name, filler.type, p.l1())
self.dis_net.to_device(self.dev)
self.combined_net = ffnet.FeedForwardNet(loss.SigmoidCrossEntropy(), )
for l in self.gen_net.layers:
self.combined_net.add(l)
for l in self.dis_net.layers:
self.combined_net.add(l)
self.combined_net.to_device(self.dev)
def train(self):
train_data, _, _, _, _, _ = load_data(self.dataset_filepath)
opt_0 = optimizer.Adam(lr=self.learning_rate) # optimizer for discriminator
opt_1 = optimizer.Adam(lr=self.learning_rate) # optimizer for generator, aka the combined model
for (p, specs) in zip(self.dis_net.param_names(), self.dis_net.param_specs()):
opt_0.register(p, specs)
for (p, specs) in zip(self.gen_net.param_names(), self.gen_net.param_specs()):
opt_1.register(p, specs)
for epoch in range(self.epochs):
idx = np.random.randint(0, train_data.shape[0], self.batch_size)
real_imgs = train_data[idx]
real_imgs = tensor.from_numpy(real_imgs)
real_imgs.to_device(self.dev)
noise = tensor.Tensor((self.batch_size, self.noise_size))
noise.uniform(-1, 1)
noise.to_device(self.dev)
fake_imgs = self.gen_net.forward(flag=False, x=noise)
real_labels = tensor.Tensor((self.batch_size, 1))
fake_labels = tensor.Tensor((self.batch_size, 1))
real_labels.set_value(1.0)
fake_labels.set_value(0.0)
real_labels.to_device(self.dev)
fake_labels.to_device(self.dev)
grads, (d_loss_real, _) = self.dis_net.train(real_imgs, real_labels)
for (s, p ,g) in zip(self.dis_net.param_names(), self.dis_net.param_values(), grads):
opt_0.apply_with_lr(epoch, self.learning_rate, g, p, str(s), epoch)
grads, (d_loss_fake, _) = self.dis_net.train(fake_imgs, fake_labels)
for (s, p ,g) in zip(self.dis_net.param_names(), self.dis_net.param_values(), grads):
opt_0.apply_with_lr(epoch, self.learning_rate, g, p, str(s), epoch)
d_loss = d_loss_real + d_loss_fake
noise = tensor.Tensor((self.batch_size, self.noise_size))
noise.uniform(-1,1)
noise.to_device(self.dev)
real_labels = tensor.Tensor((self.batch_size, 1))
real_labels.set_value(1.0)
real_labels.to_device(self.dev)
grads, (g_loss, _) = self.combined_net.train(noise, real_labels)
for (s, p ,g) in zip(self.gen_net.param_names(), self.gen_net.param_values(), grads):
opt_1.apply_with_lr(epoch, self.learning_rate, g, p, str(s), epoch)
if epoch % self.interval == 0:
self.save_image(epoch)
print_log('The {} epoch, G_LOSS: {}, D_LOSS: {}'.format(epoch, g_loss, d_loss))
def save_image(self, epoch):
rows = 5
cols = 5
channels = self.channels
noise = tensor.Tensor((rows*cols*channels, self.noise_size))
noise.uniform(-1, 1)
noise.to_device(self.dev)
gen_imgs = self.gen_net.forward(flag=False, x=noise)
gen_imgs = tensor.to_numpy(gen_imgs)
show_imgs = np.reshape(gen_imgs, (gen_imgs.shape[0], self.rows, self.cols, self.channels))
fig, axs = plt.subplots(rows, cols)
cnt = 0
for r in range(rows):
for c in range(cols):
axs[r,c].imshow(show_imgs[cnt, :, :, 0], cmap='gray')
axs[r,c].axis('off')
cnt += 1
fig.savefig("{}{}.png".format(self.file_dir, epoch))
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train GAN over MNIST')
parser.add_argument('filepath', type=str, help='the dataset path')
parser.add_argument('--use_gpu', action='store_true')
args = parser.parse_args()
if args.use_gpu:
print('Using GPU')
dev = device.create_cuda_gpu()
layer.engine = 'cudnn'
else:
print('Using CPU')
dev = device.get_default_device()
layer.engine = 'singacpp'
if not os.path.exists('vanilla_images/'):
os.makedirs('vanilla_images/')
rows = 28
cols = 28
channels = 1
noise_size = 100
hidden_size = 128
batch = 128
interval = 1000
learning_rate = 0.001
epochs = 1000000
dataset_filepath = 'mnist.pkl.gz'
file_dir = 'vanilla_images/'
vanilla = VANILLA(dev, rows, cols, channels, noise_size, hidden_size, batch,
interval, learning_rate, epochs, dataset_filepath, file_dir)
vanilla.train()