blob: 3877e83af502fd7c17a126249d487b7faa3de0c6 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
from singa import layer
from singa import model
class CNN(model.Model):
def __init__(self, num_classes=10, num_channels=1):
super(CNN, self).__init__()
self.num_classes = num_classes
self.input_size = 28
self.dimension = 4
self.conv1 = layer.Conv2d(num_channels, 20, 5, padding=0, activation="RELU")
self.conv2 = layer.Conv2d(20, 50, 5, padding=0, activation="RELU")
self.linear1 = layer.Linear(500)
self.linear2 = layer.Linear(num_classes)
self.pooling1 = layer.MaxPool2d(2, 2, padding=0)
self.pooling2 = layer.MaxPool2d(2, 2, padding=0)
self.relu = layer.ReLU()
self.flatten = layer.Flatten()
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()
def forward(self, x):
y = self.conv1(x)
y = self.pooling1(y)
y = self.conv2(y)
y = self.pooling2(y)
y = self.flatten(y)
y = self.linear1(y)
y = self.relu(y)
y = self.linear2(y)
return y
def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)
if dist_option == 'plain':
self.optimizer(loss)
elif dist_option == 'half':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)
return out, loss
def set_optimizer(self, optimizer):
self.optimizer = optimizer
def create_model(pretrained=False, **kwargs):
"""Constructs a CNN model.
Args:
pretrained (bool): If True, returns a pre-trained model.
Returns:
The created CNN model.
"""
model = CNN(**kwargs)
return model
__all__ = ['CNN', 'create_model']