blob: 80ab11f3ad5f50418c1cb7f067c7ae9c1ca02497 [file] [log] [blame]
#!/usr/bin/env python3
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# modified from https://github.com/apache/singa/blob/master/examples/cnn/train_cnn.py
# modified from https://github.com/zhengzangw/Fed-SINGA/blob/main/src/client/app.py
# modified from https://github.com/zhengzangw/Fed-SINGA/blob/main/src/client/main.py
import socket
from .proto import interface_pb2 as proto
from .proto import utils
from .proto.utils import parseargs
import time
import numpy as np
from PIL import Image
from singa import device, opt, tensor
from tqdm import tqdm
from . import bank
from . import mlp
np_dtype = {"float16": np.float16, "float32": np.float32}
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}
class Client:
"""Client sends and receives protobuf messages.
Create and start the server, then use pull and push to communicate with the server.
Attributes:
global_rank (int): The rank in training process.
host (str): Host address of the server.
port (str): Port of the server.
sock (socket.socket): Socket of the client.
weights (Dict[Any]): Weights stored locally.
"""
def __init__(
self,
global_rank: int = 0,
host: str = "127.0.0.1",
port: str = 1234,
) -> None:
"""Class init method
Args:
global_rank (int, optional): The rank in training process. Defaults to 0.
host (str, optional): Host ip address. Defaults to '127.0.0.1'.
port (str, optional): Port. Defaults to 1234.
"""
self.host = host
self.port = port
self.global_rank = global_rank
self.sock = socket.socket()
self.weights = {}
def __start_connection(self) -> None:
"""Start the network connection to server."""
self.sock.connect((self.host, self.port))
def __start_rank_pairing(self) -> None:
"""Sending global rank to server"""
utils.send_int(self.sock, self.global_rank)
def start(self) -> None:
"""Start the client.
This method will first connect to the server. Then global rank is sent to the server.
"""
self.__start_connection()
self.__start_rank_pairing()
print(f"[Client {self.global_rank}] Connect to {self.host}:{self.port}")
def close(self) -> None:
"""Close the server."""
self.sock.close()
def pull(self) -> None:
"""Client pull weights from server.
Namely server push weights from clients.
"""
message = proto.WeightsExchange()
message = utils.receive_message(self.sock, message)
for k, v in message.weights.items():
self.weights[k] = utils.deserialize_tensor(v)
def push(self) -> None:
"""Client push weights to server.
Namely server pull weights from clients.
"""
message = proto.WeightsExchange()
message.op_type = proto.GATHER
for k, v in self.weights.items():
message.weights[k] = utils.serialize_tensor(v)
utils.send_message(self.sock, message)
# Data augmentation
def augmentation(x, batch_size):
xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], "symmetric")
for data_num in range(0, batch_size):
offset = np.random.randint(8, size=2)
x[data_num, :, :, :] = xpad[
data_num, :, offset[0]: offset[0] + x.shape[2], offset[1]: offset[1] + x.shape[2]
]
if_flip = np.random.randint(2)
if if_flip:
x[data_num, :, :, :] = x[data_num, :, :, ::-1]
return x
# Calculate accuracy
def accuracy(pred, target):
# y is network output to be compared with ground truth (int)
y = np.argmax(pred, axis=1)
a = y == target
correct = np.array(a, "int").sum()
return correct
# Data partition according to the rank
def partition(global_rank, world_size, train_x, train_y, val_x, val_y):
# Partition training data
data_per_rank = train_x.shape[0] // world_size
idx_start = global_rank * data_per_rank
idx_end = (global_rank + 1) * data_per_rank
train_x = train_x[idx_start:idx_end]
train_y = train_y[idx_start:idx_end]
# Partition evaluation data
data_per_rank = val_x.shape[0] // world_size
idx_start = global_rank * data_per_rank
idx_end = (global_rank + 1) * data_per_rank
val_x = val_x[idx_start:idx_end]
val_y = val_y[idx_start:idx_end]
return train_x, train_y, val_x, val_y
# Function to all reduce NUMPY accuracy and loss from multiple devices
def reduce_variable(variable, dist_opt, reducer):
reducer.copy_from_numpy(variable)
dist_opt.all_reduce(reducer.data)
dist_opt.wait()
output = tensor.to_numpy(reducer)
return output
def resize_dataset(x, image_size):
num_data = x.shape[0]
dim = x.shape[1]
X = np.zeros(shape=(num_data, dim, image_size, image_size), dtype=np.float32)
for n in range(0, num_data):
for d in range(0, dim):
X[n, d, :, :] = np.array(
Image.fromarray(x[n, d, :, :]).resize((image_size, image_size), Image.BILINEAR),
dtype=np.float32,
)
return X
def get_data(data, data_dist="iid", device_id=None):
if data == "bank":
train_x, train_y, val_x, val_y, num_classes = bank.load(device_id)
else:
raise NotImplementedError
return train_x, train_y, val_x, val_y, num_classes
def get_model(model, num_channels=None, num_classes=None, data_size=None):
if model == "mlp":
model = mlp.create_model(data_size=data_size, num_classes=num_classes)
else:
raise NotImplementedError
return model
def run(
global_rank,
world_size,
device_id,
max_epoch,
batch_size,
model,
data,
data_dist,
sgd,
graph,
verbosity,
dist_option="plain",
spars=None,
precision="float32",
):
# Connect to server
client = Client(global_rank=device_id)
client.start()
dev = device.get_default_device()
dev.SetRandSeed(0)
np.random.seed(0)
# Prepare dataset
train_x, train_y, val_x, val_y, num_classes = get_data(data, data_dist, device_id)
num_channels = train_x.shape[1]
data_size = np.prod(train_x.shape[1: train_x.ndim]).item()
# Prepare model
model = get_model(
model, num_channels=num_channels, num_classes=num_classes, data_size=data_size
)
if model.dimension == 4:
image_size = train_x.shape[2]
# For distributed training, sequential has better performance
if hasattr(sgd, "communicator"):
DIST = True
sequential = True
else:
DIST = False
sequential = False
if DIST:
train_x, train_y, val_x, val_y = partition(
global_rank, world_size, train_x, train_y, val_x, val_y
)
if model.dimension == 4:
tx = tensor.Tensor(
(batch_size, num_channels, model.input_size, model.input_size),
dev,
singa_dtype[precision],
)
elif model.dimension == 2:
tx = tensor.Tensor((batch_size, data_size), dev, singa_dtype[precision])
np.reshape(train_x, (train_x.shape[0], -1))
np.reshape(val_x, (val_x.shape[0], -1))
ty = tensor.Tensor((batch_size,), dev, tensor.int32)
num_train_batch = train_x.shape[0] // batch_size
num_val_batch = val_x.shape[0] // batch_size
idx = np.arange(train_x.shape[0], dtype=np.int32)
# Attach model to graph
model.set_optimizer(sgd)
model.compile([tx], is_train=True, use_graph=graph, sequential=sequential)
dev.SetVerbosity(verbosity)
# Training and evaluation loop
for epoch in range(max_epoch):
if epoch > 0:
client.pull()
model.set_states(client.weights)
if global_rank == 0:
print("Starting Epoch %d:" % (epoch))
start_time = time.time()
np.random.shuffle(idx)
# Training phase
max_inner_epoch = 1
for inner_epoch in range(max_inner_epoch):
train_correct = np.zeros(shape=[1], dtype=np.float32)
train_loss = np.zeros(shape=[1], dtype=np.float32)
test_correct = np.zeros(shape=[1], dtype=np.float32)
model.train()
for b in tqdm(range(num_train_batch)):
# Generate the patch data in this iteration
x = train_x[idx[b * batch_size: (b + 1) * batch_size]]
if model.dimension == 4:
x = augmentation(x, batch_size)
if image_size != model.input_size:
x = resize_dataset(x, model.input_size)
x = x.astype(np_dtype[precision])
y = train_y[idx[b * batch_size: (b + 1) * batch_size]]
# Copy the patch data into input tensors
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
# Train the model
out, loss = model(tx, ty, dist_option, spars)
train_correct += accuracy(tensor.to_numpy(out), y)
train_loss += tensor.to_numpy(loss)[0]
if DIST:
# Reduce the evaluation accuracy and loss from multiple devices
reducer = tensor.Tensor((1,), dev, tensor.float32)
train_correct = reduce_variable(train_correct, sgd, reducer)
train_loss = reduce_variable(train_loss, sgd, reducer)
if global_rank == 0:
train_acc = train_correct / (num_train_batch * batch_size * world_size)
print(
"[inner epoch %d] Training loss = %f, training accuracy = %f"
% (inner_epoch, train_loss, train_acc),
flush=True
)
# Evaluation phase
model.eval()
for b in range(num_val_batch):
x = val_x[b * batch_size:(b + 1) * batch_size]
if model.dimension == 4:
if (image_size != model.input_size):
x = resize_dataset(x, model.input_size)
x = x.astype(np_dtype[precision])
y = val_y[b * batch_size:(b + 1) * batch_size]
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
out_test = model(tx)
test_correct += accuracy(tensor.to_numpy(out_test), y)
if DIST:
# Reduce the evaluation accuracy from multiple devices
test_correct = reduce_variable(test_correct, sgd, reducer)
# Output the evaluation accuracy
if global_rank == 0:
print('[inner epoch %d] Evaluation accuracy = %f, Elapsed Time = %fs' %
(inner_epoch, test_correct / (num_val_batch * batch_size * world_size),
time.time() - start_time),
flush=True)
client.weights = model.get_states()
client.push()
dev.PrintTimeProfiling()
client.close()
if __name__ == "__main__":
args = parseargs()
sgd = opt.SGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, dtype=singa_dtype[args.precision])
run(
0,
1,
args.device_id,
args.max_epoch,
args.batch_size,
args.model,
args.data,
args.data_dist,
sgd,
args.graph,
args.verbosity,
precision=args.precision,
)