blob: cf367279104384801a9e64c55f33998430b8c611 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under th
import os
import gzip
import numpy as np
import codecs
from singa import device
from singa import tensor
from singa import opt
from singa import autograd
from singa import sonnx
import onnx
from utils import check_exist_or_download
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(message)s')
def load_dataset():
train_x_url = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz'
train_y_url = 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz'
valid_x_url = 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz'
valid_y_url = 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
train_x = read_image_file(check_exist_or_download(train_x_url)).astype(
np.float32)
train_y = read_label_file(check_exist_or_download(train_y_url)).astype(
np.float32)
valid_x = read_image_file(check_exist_or_download(valid_x_url)).astype(
np.float32)
valid_y = read_label_file(check_exist_or_download(valid_y_url)).astype(
np.float32)
return train_x, train_y, valid_x, valid_y
def read_label_file(path):
with gzip.open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2049
length = get_int(data[4:8])
parsed = np.frombuffer(data, dtype=np.uint8, offset=8).reshape((length))
return parsed
def get_int(b):
return int(codecs.encode(b, 'hex'), 16)
def read_image_file(path):
with gzip.open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2051
length = get_int(data[4:8])
num_rows = get_int(data[8:12])
num_cols = get_int(data[12:16])
parsed = np.frombuffer(data, dtype=np.uint8, offset=16).reshape(
(length, 1, num_rows, num_cols))
return parsed
def to_categorical(y, num_classes):
y = np.array(y, dtype="int")
n = y.shape[0]
categorical = np.zeros((n, num_classes))
categorical[np.arange(n), y] = 1
categorical = categorical.astype(np.float32)
return categorical
class CNN:
def __init__(self):
self.conv1 = autograd.Conv2d(1, 20, 5, padding=0)
self.conv2 = autograd.Conv2d(20, 50, 5, padding=0)
self.linear1 = autograd.Linear(4 * 4 * 50, 500, bias=False)
self.linear2 = autograd.Linear(500, 10, bias=False)
self.pooling1 = autograd.MaxPool2d(2, 2, padding=0)
self.pooling2 = autograd.MaxPool2d(2, 2, padding=0)
def forward(self, x):
y = self.conv1(x)
y = autograd.relu(y)
y = self.pooling1(y)
y = self.conv2(y)
y = autograd.relu(y)
y = self.pooling2(y)
y = autograd.flatten(y)
y = self.linear1(y)
y = autograd.relu(y)
y = self.linear2(y)
return y
def accuracy(pred, target):
y = np.argmax(pred, axis=1)
t = np.argmax(target, axis=1)
a = y == t
return np.array(a, "int").sum() / float(len(t))
def train(model,
x,
y,
epochs=1,
batch_size=64,
dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
for i in range(epochs):
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = model.forward(x_batch)
loss = autograd.softmax_cross_entropy(output_batch, target_batch)
accuracy_rate = accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
sgd = opt.SGD(lr=0.001)
for p, gp in autograd.backward(loss):
sgd.update(p, gp)
sgd.step()
if b % 1e2 == 0:
logging.info("acc %6.2f loss, %6.2f" %
(accuracy_rate, tensor.to_numpy(loss)[0]))
logging.info("training completed")
return x_batch, output_batch
def make_onnx(x, y):
return sonnx.to_onnx([x], [y])
class Infer:
def __init__(self, sg_ir):
self.sg_ir = sg_ir
for idx, tens in sg_ir.tensor_map.items():
# allow the tensors to be updated
tens.requires_grad = True
tens.stores_grad = True
def forward(self, x):
return sg_ir.run([x])[0]
def re_train(sg_ir,
x,
y,
epochs=1,
batch_size=64,
dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
new_model = Infer(sg_ir)
for i in range(epochs):
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = new_model.forward(x_batch)
loss = autograd.softmax_cross_entropy(output_batch, target_batch)
accuracy_rate = accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
sgd = opt.SGD(lr=0.01)
for p, gp in autograd.backward(loss):
sgd.update(p, gp)
sgd.step()
if b % 1e2 == 0:
logging.info("acc %6.2f loss, %6.2f" %
(accuracy_rate, tensor.to_numpy(loss)[0]))
logging.info("re-training completed")
return new_model
class Trans:
def __init__(self, sg_ir, last_layers):
self.sg_ir = sg_ir
self.last_layers = last_layers
self.append_linear1 = autograd.Linear(500, 128, bias=False)
self.append_linear2 = autograd.Linear(128, 32, bias=False)
self.append_linear3 = autograd.Linear(32, 10, bias=False)
def forward(self, x):
y = sg_ir.run([x], last_layers=self.last_layers)[0]
y = self.append_linear1(y)
y = autograd.relu(y)
y = self.append_linear2(y)
y = autograd.relu(y)
y = self.append_linear3(y)
y = autograd.relu(y)
return y
def transfer_learning(sg_ir,
x,
y,
epochs=1,
batch_size=64,
dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
trans_model = Trans(sg_ir, -1)
for i in range(epochs):
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = trans_model.forward(x_batch)
loss = autograd.softmax_cross_entropy(output_batch, target_batch)
accuracy_rate = accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
sgd = opt.SGD(lr=0.07)
for p, gp in autograd.backward(loss):
sgd.update(p, gp)
sgd.step()
if b % 1e2 == 0:
logging.info("acc %6.2f loss, %6.2f" %
(accuracy_rate, tensor.to_numpy(loss)[0]))
logging.info("transfer-learning completed")
return trans_model
def test(model, x, y, batch_size=64, dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
result = 0
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = model.forward(x_batch)
result += accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
logging.info("testing acc %6.2f" % (result / batch_number))
if __name__ == "__main__":
# create device
dev = device.create_cuda_gpu()
#dev = device.get_default_device()
# create model
model = CNN()
# load data
train_x, train_y, valid_x, valid_y = load_dataset()
# normalization
train_x = train_x / 255
valid_x = valid_x / 255
train_y = to_categorical(train_y, 10)
valid_y = to_categorical(valid_y, 10)
# do training
autograd.training = True
x, y = train(model, train_x, train_y, dev=dev)
onnx_model = make_onnx(x, y)
# logging.info('The model is:\n{}'.format(onnx_model))
# Save the ONNX model
model_path = os.path.join('/', 'tmp', 'mnist.onnx')
onnx.save(onnx_model, model_path)
logging.info('The model is saved.')
# load the ONNX model
onnx_model = onnx.load(model_path)
sg_ir = sonnx.prepare(onnx_model, device=dev)
# inference
autograd.training = False
logging.info('The inference result is:')
test(Infer(sg_ir), valid_x, valid_y, dev=dev)
# re-training
autograd.training = True
new_model = re_train(sg_ir, train_x, train_y, dev=dev)
autograd.training = False
test(new_model, valid_x, valid_y, dev=dev)
# transfer-learning
autograd.training = True
new_model = transfer_learning(sg_ir, train_x, train_y, dev=dev)
autograd.training = False
test(new_model, valid_x, valid_y, dev=dev)