blob: ca90007ec878a98e1e5f24ee6d89248d7c925280 [file] [log] [blame]
/************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#include "singa/neuralnet/neuron_layer.h"
#if CUDNN_MAJOR == 4
namespace singa {
CudnnBMLayer::~CudnnBMLayer() {
if (has_init_cudnn_) {
CHECK_CUDNN(cudnnDestroyTensorDescriptor(bnScaleBiasMeanVar_desc_));
CHECK_CUDNN(cudnnDestroyTensorDescriptor(bnScaleBiasDiff_desc_));
}
}
void CudnnBMLayer::InitCudnn() {
CudnnBase::InitCudnn();
CHECK_CUDNN(cudnnCreateTensorDescriptor(&bnScaleBiasMeanVar_desc_));
CHECK_CUDNN(cudnnCreateTensorDescriptor(&bnScaleBiasDiff_desc_));
CHECK_CUDNN(cudnnSetTensor4dDescriptor(src_desc_,
CUDNN_TENSOR_NCHW,
CUDNN_DATA_FLOAT,
batchsize_,
channels_,
height_,
width_));
CHECK_CUDNN(cudnnSetTensor4dDescriptor(my_desc_,
CUDNN_TENSOR_NCHW,
CUDNN_DATA_FLOAT,
batchsize_,
channels_,
height_,
width_));
CHECK_CUDNN(cudnnSetTensor4dDescriptor(bnScaleBiasMeanVar_desc_,
CUDNN_TENSOR_NCHW,
CUDNN_DATA_FLOAT,
1,
channels_,
1,
1));
CHECK_CUDNN(cudnnSetTensor4dDescriptor(bnScaleBiasDiff_desc_,
CUDNN_TENSOR_NCHW,
CUDNN_DATA_FLOAT,
1,
channels_,
1,
1));
vector<int> shape{1, channels_, 1, 1};
resultSaveMean_.Reshape(shape);
resultSaveInvVariance_.Reshape(shape);
mode_ = CUDNN_BATCHNORM_SPATIAL;
}
void CudnnBMLayer::ComputeFeature(int flag,
const vector<Layer*>& srclayers) {
if (!has_init_cudnn_)
InitCudnn();
const float alpha = 1.0f, beta = 0.0f;
double exponentialAverageFactor = 1.0;
double epsilon = CUDNN_BN_MIN_EPSILON;
// check training
if ((flag & kTrain) != kTrain) {
CHECK_CUDNN(cudnnBatchNormalizationForwardInference(handle_,
mode_,
&alpha,
&beta,
src_desc_,
srclayers.at(0)->data(this).gpu_data(),
my_desc_,
data_.mutable_gpu_data(),
bnScaleBiasMeanVar_desc_,
bnScale_->data().gpu_data(),
bnBias_->data().gpu_data(),
resultRunningMean_->data().gpu_data(),
resultRunningInvVariance_->data().gpu_data(),
epsilon));
} else {
CHECK_CUDNN(cudnnBatchNormalizationForwardTraining(handle_,
mode_,
&alpha,
&beta,
src_desc_,
srclayers.at(0)->data(this).gpu_data(),
my_desc_,
data_.mutable_gpu_data(),
bnScaleBiasMeanVar_desc_,
bnScale_->data().gpu_data(),
bnBias_->data().gpu_data(),
exponentialAverageFactor,
resultRunningMean_->mutable_data()->mutable_gpu_data(),
resultRunningInvVariance_->mutable_data()->mutable_gpu_data(),
epsilon,
resultSaveMean_.mutable_gpu_data(),
resultSaveInvVariance_.mutable_gpu_data()));
}
}
void CudnnBMLayer::ComputeGradient(int flag,
const vector<Layer*>& srclayers) {
const float alpha = 1.0f, beta = 0.0f, alphaDiff = 1.0f, betaDiff = 0.0f;
double epsilon = CUDNN_BN_MIN_EPSILON;
CHECK_CUDNN(cudnnBatchNormalizationBackward(handle_,
mode_,
&alpha,
&beta,
&alphaDiff,
&betaDiff,
src_desc_,
srclayers.at(0)->data(this).gpu_data(),
my_desc_,
grad_.gpu_data(),
src_desc_,
srclayers.at(0)->mutable_grad(this)->mutable_gpu_data(),
bnScaleBiasDiff_desc_,
bnScale_->data().gpu_data(),
bnScale_->mutable_grad()->mutable_gpu_data(),
bnBias_->mutable_grad()->mutable_gpu_data(),
epsilon,
resultSaveMean_.gpu_data(),
resultSaveInvVariance_.gpu_data()));
}
} // namespace singa
#endif