| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import os |
| |
| from shapely.geometry import Point |
| |
| from tests import tests_resource |
| from tests.test_base import TestBase |
| from tests.tools import distance_sorting_functions |
| |
| from sedona.spark.core.enums import FileDataSplitter, IndexType |
| from sedona.spark.core.spatialOperator import KNNQuery |
| from sedona.spark.core.SpatialRDD import PolygonRDD |
| |
| input_location = os.path.join(tests_resource, "primaryroads-polygon.csv") |
| splitter = FileDataSplitter.CSV |
| gridType = "rtree" |
| indexType = "rtree" |
| |
| |
| class TestPolygonKnn(TestBase): |
| |
| loop_times = 1 |
| top_k = 100 |
| query_point = Point(-84.01, 34.01) |
| |
| def test_spatial_knn_query(self): |
| polygon_rdd = PolygonRDD(self.sc, input_location, splitter, True) |
| |
| for i in range(self.loop_times): |
| result = KNNQuery.SpatialKnnQuery( |
| polygon_rdd, self.query_point, self.top_k, False |
| ) |
| assert result.__len__() > -1 |
| assert result[0].getUserData() is not None |
| |
| def test_spatial_knn_query_using_index(self): |
| polygon_rdd = PolygonRDD(self.sc, input_location, splitter, True) |
| polygon_rdd.buildIndex(IndexType.RTREE, False) |
| for i in range(self.loop_times): |
| result = KNNQuery.SpatialKnnQuery( |
| polygon_rdd, self.query_point, self.top_k, True |
| ) |
| assert result.__len__() > -1 |
| assert result[0].getUserData() is not None |
| |
| def test_spatial_knn_correctness(self): |
| polygon_rdd = PolygonRDD(self.sc, input_location, splitter, True) |
| result_no_index = KNNQuery.SpatialKnnQuery( |
| polygon_rdd, self.query_point, self.top_k, False |
| ) |
| polygon_rdd.buildIndex(IndexType.RTREE, False) |
| result_with_index = KNNQuery.SpatialKnnQuery( |
| polygon_rdd, self.query_point, self.top_k, True |
| ) |
| |
| sorted_result_no_index = sorted( |
| result_no_index, |
| key=lambda geo_data: distance_sorting_functions(geo_data, self.query_point), |
| ) |
| |
| sorted_result_with_index = sorted( |
| result_with_index, |
| key=lambda geo_data: distance_sorting_functions(geo_data, self.query_point), |
| ) |
| |
| difference = 0 |
| for x in range(self.top_k): |
| difference += sorted_result_no_index[x].geom.distance( |
| sorted_result_with_index[x].geom |
| ) |
| |
| assert difference == 0 |