blob: 6a3459c4a30f7e44f7c5ef02035ea019e31648c6 [file] [log] [blame]
{
"cells": [
{
"cell_type": "markdown",
"id": "1932983e-1cd2-41d0-a5eb-0537b3ac3feb",
"metadata": {},
"source": [
"<!---\n",
" Licensed to the Apache Software Foundation (ASF) under one\n",
" or more contributor license agreements. See the NOTICE file\n",
" distributed with this work for additional information\n",
" regarding copyright ownership. The ASF licenses this file\n",
" to you under the Apache License, Version 2.0 (the\n",
" \"License\"); you may not use this file except in compliance\n",
" with the License. You may obtain a copy of the License at\n",
"\n",
" http://www.apache.org/licenses/LICENSE-2.0\n",
"\n",
" Unless required by applicable law or agreed to in writing,\n",
" software distributed under the License is distributed on an\n",
" \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n",
" KIND, either express or implied. See the License for the\n",
" specific language governing permissions and limitations\n",
" under the License.\n",
"-->\n",
"\n",
"# Working with Vector Data\n",
"\n",
"> Note: Before running this notebook, ensure that you have installed SedonaDB: `pip install \"apache-sedona[db]\"`\n",
"\n",
"Process vector data using sedona.db. You will learn to create DataFrames, run spatial queries, and manage file I/O. Let's begin by connecting to sedona.db.\n",
"\n",
"Let's start by establishing a SedonaDB connection."
]
},
{
"cell_type": "markdown",
"id": "119fcbae",
"metadata": {},
"source": [
"## Establish SedonaDB connection\n",
"\n",
"Here's how to create the SedonaDB connection:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "53c3b7a8-c42a-407a-a454-6ee1e943fbcc",
"metadata": {},
"outputs": [],
"source": [
"import sedona.db\n",
"\n",
"sd = sedona.db.connect()"
]
},
{
"cell_type": "markdown",
"id": "7aeaa60f-2325-418c-8e72-4344bd4a75fe",
"metadata": {},
"source": [
"Now, let's see how to create SedonaDB dataframes.\n",
"\n",
"## Create SedonaDB DataFrame\n",
"\n",
"**Manually creating SedonaDB DataFrame**\n",
"\n",
"Here's how to manually create a SedonaDB DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b3377767-d747-407c-92c0-8786c1998131",
"metadata": {},
"outputs": [],
"source": [
"df = sd.sql(\"\"\"\n",
"SELECT * FROM (VALUES\n",
" ('one', ST_GeomFromWkt('POINT(1 2)')),\n",
" ('two', ST_GeomFromWkt('POLYGON((-74.0 40.7, -74.0 40.8, -73.9 40.8, -73.9 40.7, -74.0 40.7))')),\n",
" ('three', ST_GeomFromWkt('LINESTRING(-74.0060 40.7128, -73.9352 40.7306, -73.8561 40.8484)')))\n",
"AS t(val, point)\"\"\")"
]
},
{
"cell_type": "markdown",
"id": "0f9e1319-2e7a-4d98-9df0-47a9a73cfff3",
"metadata": {},
"source": [
"Check the type of the DataFrame."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e8be30ab-4818-4db8-bae2-83e973ad1b77",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"sedonadb.dataframe.DataFrame"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(df)"
]
},
{
"cell_type": "markdown",
"id": "8225ed1f-45a4-4915-a582-8ae191ec53ed",
"metadata": {},
"source": [
"**Create SedonaDB DataFrame from files in S3**\n",
"\n",
"For most production applications, you will create SedonaDB DataFrames by reading data from a file. Let's see how to read GeoParquet files in AWS S3 into a SedonaDB DataFrame."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "151df287-4b2d-433e-9769-c3378df03b1b",
"metadata": {},
"outputs": [],
"source": [
"sd.read_parquet(\n",
" \"s3://overturemaps-us-west-2/release/2025-11-19.0/theme=divisions/type=division_area/\",\n",
" options={\"aws.skip_signature\": True, \"aws.region\": \"us-west-2\"},\n",
").to_view(\"division_area\")"
]
},
{
"cell_type": "markdown",
"id": "858fcc66-816d-4c71-8875-82b74169eccd",
"metadata": {},
"source": [
"Now, let's run some spatial queries.\n",
"\n",
"### Read from GeoPandas DataFrame\n",
"\n",
"This section shows how to convert a GeoPandas DataFrame into a SedonaDB DataFrame.\n",
"\n",
"Start by reading a FlatGeoBuf file into a GeoPandas DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b81549f2-0f58-49e4-9011-8de6578c2b0e",
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"\n",
"path = \"https://raw.githubusercontent.com/geoarrow/geoarrow-data/v0.2.0/natural-earth/files/natural-earth_cities.fgb\"\n",
"gdf = gpd.read_file(path)"
]
},
{
"cell_type": "markdown",
"id": "2265f94b-ccb3-4634-8c52-a8799c68c76a",
"metadata": {},
"source": [
"Now convert the GeoPandas DataFrame to a SedonaDB DataFrame and view three rows of content:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0e4819db-bf58-42d7-8b5b-f272d0f19266",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"┌──────────────┬──────────────────────────────┐\n",
"│ name ┆ geometry │\n",
"│ utf8 ┆ geometry │\n",
"╞══════════════╪══════════════════════════════╡\n",
"│ Vatican City ┆ POINT(12.4533865 41.9032822) │\n",
"├╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ San Marino ┆ POINT(12.4417702 43.9360958) │\n",
"├╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Vaduz ┆ POINT(9.5166695 47.1337238) │\n",
"└──────────────┴──────────────────────────────┘\n"
]
}
],
"source": [
"df = sd.create_data_frame(gdf)\n",
"df.show(3)"
]
},
{
"cell_type": "markdown",
"id": "6890bcc3-f3bd-4c47-bf86-2607bed5e480",
"metadata": {},
"source": [
"## Spatial queries\n",
"\n",
"Let's see how to run spatial operations like filtering, joins, and clustering algorithms.\n",
"\n",
"### Spatial filtering\n",
"\n",
"Let's run a spatial filtering operation to fetch all the objects in the following polygon:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8c8a4b48-8c4e-412e-900f-8c0f6f4ccc1d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"┌─────────┬────────┬───────────────────────────────────────────────────────────────────────────────┐\n",
"│ country ┆ region ┆ geometry │\n",
"│ utf8 ┆ utf8 ┆ geometry │\n",
"╞═════════╪════════╪═══════════════════════════════════════════════════════════════════════════════╡\n",
"│ CA ┆ CA-NB ┆ MULTIPOLYGON(((-67.1074147 44.4817314,-67.1058772 44.4815007,-67.104319 44.4… │\n",
"├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ CA ┆ CA-NB ┆ POLYGON((-66.2598821 45.1380421,-66.2599962 45.1381233,-66.2600591 45.138285… │\n",
"├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ CA ┆ CA-NB ┆ POLYGON((-66.4595418 45.2215004,-66.4595406 45.221468,-66.4595396 45.2213915… │\n",
"└─────────┴────────┴───────────────────────────────────────────────────────────────────────────────┘\n"
]
}
],
"source": [
"nova_scotia_bbox_wkt = (\n",
" \"POLYGON((-66.5 43.4, -66.5 47.1, -59.8 47.1, -59.8 43.4, -66.5 43.4))\"\n",
")\n",
"\n",
"ns = sd.sql(f\"\"\"\n",
"SELECT country, region, geometry\n",
"FROM division_area\n",
"WHERE ST_Intersects(geometry, ST_SetSRID(ST_GeomFromText('{nova_scotia_bbox_wkt}'), 4326))\n",
"\"\"\")\n",
"\n",
"ns.show(3)"
]
},
{
"cell_type": "markdown",
"id": "32076e01-d807-40ed-8457-9d8c4244e89f",
"metadata": {},
"source": [
"You can see it only includes the divisions in the Nova Scotia area.\n",
"\n",
"### K-nearest neighbors (KNN) joins\n",
"\n",
"Create `restaurants` and `customers` views so we can demonstrate the KNN join functionality."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "deaa36db-2fee-4ba2-ab79-1dc756cb1655",
"metadata": {},
"outputs": [],
"source": [
"df = sd.sql(\"\"\"\n",
"SELECT name, ST_Point(lng, lat) AS location\n",
"FROM (VALUES\n",
" (101, -74.0, 40.7, 'Pizza Palace'),\n",
" (102, -73.99, 40.69, 'Burger Barn'),\n",
" (103, -74.02, 40.72, 'Taco Town'),\n",
" (104, -73.98, 40.75, 'Sushi Spot'),\n",
" (105, -74.05, 40.68, 'Deli Direct')\n",
") AS t(id, lng, lat, name)\n",
"\"\"\")\n",
"sd.sql(\"drop view if exists restaurants\")\n",
"df.to_view(\"restaurants\")\n",
"\n",
"df = sd.sql(\"\"\"\n",
"SELECT name, ST_Point(lng, lat) AS location\n",
"FROM (VALUES\n",
" (1, -74.0, 40.7, 'Alice'),\n",
" (2, -73.9, 40.8, 'Bob'),\n",
" (3, -74.1, 40.6, 'Carol')\n",
") AS t(id, lng, lat, name)\n",
"\"\"\")\n",
"sd.sql(\"drop view if exists customers\")\n",
"df.to_view(\"customers\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e3bc4976-4245-432f-b265-7f6aa13f35b9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"┌───────┬───────────────────┐\n",
"│ name ┆ location │\n",
"│ utf8 ┆ geometry │\n",
"╞═══════╪═══════════════════╡\n",
"│ Alice ┆ POINT(-74 40.7) │\n",
"├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Bob ┆ POINT(-73.9 40.8) │\n",
"├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Carol ┆ POINT(-74.1 40.6) │\n",
"└───────┴───────────────────┘\n"
]
}
],
"source": [
"df.show()"
]
},
{
"cell_type": "markdown",
"id": "9df227d6-0972-457a-87e3-5a89802c460f",
"metadata": {},
"source": [
"Perform a KNN join to identify the two restaurants that are nearest to each customer:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "05565e15-ee18-431c-8fd2-673291d8d0ee",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"┌──────────┬──────────────┐\n",
"│ customer ┆ restaurant │\n",
"│ utf8 ┆ utf8 │\n",
"╞══════════╪══════════════╡\n",
"│ Alice ┆ Burger Barn │\n",
"├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Alice ┆ Pizza Palace │\n",
"├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Bob ┆ Pizza Palace │\n",
"├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Bob ┆ Sushi Spot │\n",
"├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Carol ┆ Deli Direct │\n",
"├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
"│ Carol ┆ Pizza Palace │\n",
"└──────────┴──────────────┘\n"
]
}
],
"source": [
"sd.sql(\"\"\"\n",
"SELECT\n",
" c.name AS customer,\n",
" r.name AS restaurant\n",
"FROM customers c, restaurants r\n",
"WHERE ST_KNN(c.location, r.location, 2, false)\n",
"ORDER BY c.name, r.name;\n",
"\"\"\").show()"
]
},
{
"cell_type": "markdown",
"id": "2e93fe6a-b0a7-4ec0-952c-dde9edcacdc4",
"metadata": {},
"source": [
"Notice how each customer has two rows - one for each of the two closest restaurants."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}