blob: 575226532f7a1dd6a7170af5ec2c10597fdcfedd [file] [log] [blame]
package org.template.classification
import io.prediction.controller.P2LAlgorithm
import io.prediction.controller.Params
import org.apache.spark.SparkContext
import org.apache.spark.mllib.tree.RandomForest // CHANGED
import org.apache.spark.mllib.tree.model.RandomForestModel // CHANGED
import org.apache.spark.mllib.linalg.Vectors
// CHANGED
case class RandomForestAlgorithmParams(
numClasses: Int,
numTrees: Int,
featureSubsetStrategy: String,
impurity: String,
maxDepth: Int,
maxBins: Int
) extends Params
// extends P2LAlgorithm because the MLlib's RandomForestModel doesn't
// contain RDD.
class RandomForestAlgorithm(val ap: RandomForestAlgorithmParams) // CHANGED
extends P2LAlgorithm[PreparedData, RandomForestModel, // CHANGED
Query, PredictedResult] {
// CHANGED
def train(sc: SparkContext, data: PreparedData): RandomForestModel = {
// CHANGED
// Empty categoricalFeaturesInfo indicates all features are continuous.
val categoricalFeaturesInfo = Map[Int, Int]()
RandomForest.trainClassifier(
data.labeledPoints,
ap.numClasses,
categoricalFeaturesInfo,
ap.numTrees,
ap.featureSubsetStrategy,
ap.impurity,
ap.maxDepth,
ap.maxBins)
}
def predict(
model: RandomForestModel, // CHANGED
query: Query): PredictedResult = {
val label = model.predict(Vectors.dense(query.features))
new PredictedResult(label)
}
}