blob: 46996f5a1c033ed38148c2913ccea3b463d4fa72 [file] [log] [blame]
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
-- Query Phrase Popularity (local mode)
-- This script processes a search query log file from the Excite search engine and finds search phrases that occur with particular high frequency during certain times of the day.
-- Register the tutorial JAR file so that the included UDFs can be called in the script.
REGISTER ./tutorial.jar;
-- Use the PigStorage function to load the excite log file into the raw bag as an array of records.
-- Input: (user,time,query)
raw = LOAD 'excite-small.log' USING PigStorage('\t') AS (user, time, query);
-- Call the NonURLDetector UDF to remove records if the query field is empty or a URL.
clean1 = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query);
-- Call the ToLower UDF to change the query field to lowercase.
clean2 = FOREACH clean1 GENERATE user, time, org.apache.pig.tutorial.ToLower(query) as query;
-- Because the log file only contains queries for a single day, we are only interested in the hour.
-- The excite query log timestamp format is YYMMDDHHMMSS.
-- Call the ExtractHour UDF to extract the hour (HH) from the time field.
houred = FOREACH clean2 GENERATE user, org.apache.pig.tutorial.ExtractHour(time) as hour, query;
-- Call the NGramGenerator UDF to compose the n-grams of the query.
ngramed1 = FOREACH houred GENERATE user, hour, flatten(org.apache.pig.tutorial.NGramGenerator(query)) as ngram;
-- Use the DISTINCT command to get the unique n-grams for all records.
ngramed2 = DISTINCT ngramed1;
-- Use the GROUP command to group records by n-gram and hour.
hour_frequency1 = GROUP ngramed2 BY (ngram, hour);
-- Use the COUNT function to get the count (occurrences) of each n-gram.
hour_frequency2 = FOREACH hour_frequency1 GENERATE flatten($0), COUNT($1) as count;
-- Use the GROUP command to group records by n-gram only.
-- Each group now corresponds to a distinct n-gram and has the count for each hour.
uniq_frequency1 = GROUP hour_frequency2 BY group::ngram;
-- For each group, identify the hour in which this n-gram is used with a particularly high frequency.
-- Call the ScoreGenerator UDF to calculate a "popularity" score for the n-gram.
uniq_frequency2 = FOREACH uniq_frequency1 GENERATE flatten($0), flatten(org.apache.pig.tutorial.ScoreGenerator($1));
-- Use the FOREACH-GENERATE command to assign names to the fields.
uniq_frequency3 = FOREACH uniq_frequency2 GENERATE $1 as hour, $0 as ngram, $2 as score, $3 as count, $4 as mean;
-- Use the FILTER command to move all records with a score less than or equal to 2.0.
filtered_uniq_frequency = FILTER uniq_frequency3 BY score > 2.0;
-- Use the ORDER command to sort the remaining records by hour and score.
ordered_uniq_frequency = ORDER filtered_uniq_frequency BY hour, score;
-- Use the PigStorage function to store the results.
-- Output: (hour, n-gram, score, count, average_counts_among_all_hours)
STORE ordered_uniq_frequency INTO 'script1-local-results.txt' USING PigStorage();