blob: 95a354b0978e51bfa60b92a1c968ab8e69750ebe [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.phoenix.execute;
import static com.google.common.base.Preconditions.checkNotNull;
import static org.apache.phoenix.monitoring.GlobalClientMetrics.GLOBAL_MUTATION_BATCH_FAILED_COUNT;
import static org.apache.phoenix.monitoring.GlobalClientMetrics.GLOBAL_MUTATION_BATCH_SIZE;
import static org.apache.phoenix.monitoring.GlobalClientMetrics.GLOBAL_MUTATION_BYTES;
import static org.apache.phoenix.monitoring.GlobalClientMetrics.GLOBAL_MUTATION_COMMIT_TIME;
import static org.apache.phoenix.query.QueryServices.WILDCARD_QUERY_DYNAMIC_COLS_ATTRIB;
import static org.apache.phoenix.query.QueryServicesOptions.DEFAULT_WILDCARD_QUERY_DYNAMIC_COLS_ATTRIB;
import java.io.IOException;
import java.sql.SQLException;
import java.sql.Timestamp;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import javax.annotation.Nonnull;
import javax.annotation.concurrent.Immutable;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Delete;
import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.Pair;
import org.apache.htrace.Span;
import org.apache.htrace.TraceScope;
import org.apache.phoenix.cache.ServerCacheClient.ServerCache;
import org.apache.phoenix.compile.MutationPlan;
import org.apache.phoenix.coprocessor.BaseScannerRegionObserver;
import org.apache.phoenix.coprocessor.MetaDataProtocol.MetaDataMutationResult;
import org.apache.phoenix.exception.SQLExceptionCode;
import org.apache.phoenix.exception.SQLExceptionInfo;
import org.apache.phoenix.hbase.index.IndexRegionObserver;
import org.apache.phoenix.hbase.index.exception.IndexWriteException;
import org.apache.phoenix.hbase.index.util.ImmutableBytesPtr;
import org.apache.phoenix.index.IndexMaintainer;
import org.apache.phoenix.index.IndexMetaDataCacheClient;
import org.apache.phoenix.index.PhoenixIndexBuilder;
import org.apache.phoenix.index.PhoenixIndexFailurePolicy;
import org.apache.phoenix.index.PhoenixIndexFailurePolicy.MutateCommand;
import org.apache.phoenix.index.PhoenixIndexMetaData;
import org.apache.phoenix.jdbc.PhoenixConnection;
import org.apache.phoenix.jdbc.PhoenixStatement.Operation;
import org.apache.phoenix.monitoring.GlobalClientMetrics;
import org.apache.phoenix.monitoring.MutationMetricQueue;
import org.apache.phoenix.monitoring.MutationMetricQueue.MutationMetric;
import org.apache.phoenix.monitoring.MutationMetricQueue.NoOpMutationMetricsQueue;
import org.apache.phoenix.monitoring.ReadMetricQueue;
import org.apache.phoenix.query.QueryConstants;
import org.apache.phoenix.query.QueryServices;
import org.apache.phoenix.query.QueryServicesOptions;
import org.apache.phoenix.schema.IllegalDataException;
import org.apache.phoenix.schema.MetaDataClient;
import org.apache.phoenix.schema.PColumn;
import org.apache.phoenix.schema.PIndexState;
import org.apache.phoenix.schema.PMetaData;
import org.apache.phoenix.schema.PName;
import org.apache.phoenix.schema.PRow;
import org.apache.phoenix.schema.PTable;
import org.apache.phoenix.schema.PTableRef;
import org.apache.phoenix.schema.PTableType;
import org.apache.phoenix.schema.RowKeySchema;
import org.apache.phoenix.schema.TableNotFoundException;
import org.apache.phoenix.schema.TableRef;
import org.apache.phoenix.schema.ValueSchema.Field;
import org.apache.phoenix.schema.types.PLong;
import org.apache.phoenix.schema.types.PTimestamp;
import org.apache.phoenix.trace.util.Tracing;
import org.apache.phoenix.transaction.PhoenixTransactionContext;
import org.apache.phoenix.transaction.PhoenixTransactionContext.PhoenixVisibilityLevel;
import org.apache.phoenix.transaction.TransactionFactory;
import org.apache.phoenix.transaction.TransactionFactory.Provider;
import org.apache.phoenix.util.EncodedColumnsUtil;
import org.apache.phoenix.util.EnvironmentEdgeManager;
import org.apache.phoenix.util.IndexUtil;
import org.apache.phoenix.util.LogUtil;
import org.apache.phoenix.util.PhoenixKeyValueUtil;
import org.apache.phoenix.util.SQLCloseable;
import org.apache.phoenix.util.SchemaUtil;
import org.apache.phoenix.util.ServerUtil;
import org.apache.phoenix.util.SizedUtil;
import org.apache.phoenix.util.TransactionUtil;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.google.common.base.Preconditions;
import com.google.common.base.Predicate;
import com.google.common.collect.Iterators;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;
/**
* Tracks the uncommitted state
*/
public class MutationState implements SQLCloseable {
private static final Logger LOGGER = LoggerFactory.getLogger(MutationState.class);
private static final int[] EMPTY_STATEMENT_INDEX_ARRAY = new int[0];
private static final int MAX_COMMIT_RETRIES = 3;
private final PhoenixConnection connection;
private final long maxSize;
private final long maxSizeBytes;
private final long batchSize;
private final long batchSizeBytes;
private long batchCount = 0L;
private final Map<TableRef, MultiRowMutationState> mutations;
private final Set<String> uncommittedPhysicalNames = Sets.newHashSetWithExpectedSize(10);
private long sizeOffset;
private int numRows = 0;
private long estimatedSize = 0;
private int[] uncommittedStatementIndexes = EMPTY_STATEMENT_INDEX_ARRAY;
private boolean isExternalTxContext = false;
private Map<TableRef, MultiRowMutationState> txMutations = Collections.emptyMap();
private PhoenixTransactionContext phoenixTransactionContext = PhoenixTransactionContext.NULL_CONTEXT;
private final MutationMetricQueue mutationMetricQueue;
private ReadMetricQueue readMetricQueue;
public MutationState(long maxSize, long maxSizeBytes, PhoenixConnection connection) {
this(maxSize, maxSizeBytes, connection, false, null);
}
public MutationState(long maxSize, long maxSizeBytes, PhoenixConnection connection,
PhoenixTransactionContext txContext) {
this(maxSize, maxSizeBytes, connection, false, txContext);
}
public MutationState(MutationState mutationState) {
this(mutationState, mutationState.connection);
}
public MutationState(MutationState mutationState, PhoenixConnection connection) {
this(mutationState.maxSize, mutationState.maxSizeBytes, connection, true, mutationState
.getPhoenixTransactionContext());
}
public MutationState(long maxSize, long maxSizeBytes, PhoenixConnection connection, long sizeOffset) {
this(maxSize, maxSizeBytes, connection, false, null, sizeOffset);
}
private MutationState(long maxSize, long maxSizeBytes, PhoenixConnection connection, boolean subTask,
PhoenixTransactionContext txContext) {
this(maxSize, maxSizeBytes, connection, subTask, txContext, 0);
}
private MutationState(long maxSize, long maxSizeBytes, PhoenixConnection connection, boolean subTask,
PhoenixTransactionContext txContext, long sizeOffset) {
this(maxSize, maxSizeBytes, connection, Maps.<TableRef, MultiRowMutationState> newHashMapWithExpectedSize(5),
subTask, txContext);
this.sizeOffset = sizeOffset;
}
MutationState(long maxSize, long maxSizeBytes, PhoenixConnection connection,
Map<TableRef, MultiRowMutationState> mutations, boolean subTask, PhoenixTransactionContext txContext) {
this.maxSize = maxSize;
this.maxSizeBytes = maxSizeBytes;
this.connection = connection;
this.batchSize = connection.getMutateBatchSize();
this.batchSizeBytes = connection.getMutateBatchSizeBytes();
this.mutations = mutations;
boolean isMetricsEnabled = connection.isRequestLevelMetricsEnabled();
this.mutationMetricQueue = isMetricsEnabled ? new MutationMetricQueue()
: NoOpMutationMetricsQueue.NO_OP_MUTATION_METRICS_QUEUE;
if (subTask) {
// this code path is only used while running child scans, we can't pass the txContext to child scans
// as it is not thread safe, so we use the tx member variable
phoenixTransactionContext = txContext.newTransactionContext(txContext, subTask);
} else if (txContext != null) {
isExternalTxContext = true;
phoenixTransactionContext = txContext.newTransactionContext(txContext, subTask);
}
}
public MutationState(TableRef table, MultiRowMutationState mutations, long sizeOffset, long maxSize,
long maxSizeBytes, PhoenixConnection connection) throws SQLException {
this(maxSize, maxSizeBytes, connection, false, null, sizeOffset);
if (!mutations.isEmpty()) {
this.mutations.put(table, mutations);
}
this.numRows = mutations.size();
this.estimatedSize = PhoenixKeyValueUtil.getEstimatedRowMutationSize(this.mutations);
throwIfTooBig();
}
public long getEstimatedSize() {
return estimatedSize;
}
public long getMaxSize() {
return maxSize;
}
public long getMaxSizeBytes() {
return maxSizeBytes;
}
public PhoenixTransactionContext getPhoenixTransactionContext() {
return phoenixTransactionContext;
}
/**
* Commit a write fence when creating an index so that we can detect when a data table transaction is started before
* the create index but completes after it. In this case, we need to rerun the data table transaction after the
* index creation so that the index rows are generated. See TEPHRA-157 for more information.
*
* @param dataTable
* the data table upon which an index is being added
* @throws SQLException
*/
public void commitDDLFence(PTable dataTable) throws SQLException {
if (dataTable.isTransactional()) {
try {
phoenixTransactionContext.commitDDLFence(dataTable);
} finally {
// The client expects a transaction to be in progress on the txContext while the
// VisibilityFence.prepareWait() starts a new tx and finishes/aborts it. After it's
// finished, we start a new one here.
// TODO: seems like an autonomous tx capability in Tephra would be useful here.
phoenixTransactionContext.begin();
}
}
}
public boolean checkpointIfNeccessary(MutationPlan plan) throws SQLException {
if (!phoenixTransactionContext.isTransactionRunning() || plan.getTargetRef() == null
|| plan.getTargetRef().getTable() == null || !plan.getTargetRef().getTable().isTransactional()) { return false; }
Set<TableRef> sources = plan.getSourceRefs();
if (sources.isEmpty()) { return false; }
// For a DELETE statement, we're always querying the table being deleted from. This isn't
// a problem, but it potentially could be if there are other references to the same table
// nested in the DELETE statement (as a sub query or join, for example).
TableRef ignoreForExcludeCurrent = plan.getOperation() == Operation.DELETE && sources.size() == 1 ? plan
.getTargetRef() : null;
boolean excludeCurrent = false;
String targetPhysicalName = plan.getTargetRef().getTable().getPhysicalName().getString();
for (TableRef source : sources) {
if (source.getTable().isTransactional() && !source.equals(ignoreForExcludeCurrent)) {
String sourcePhysicalName = source.getTable().getPhysicalName().getString();
if (targetPhysicalName.equals(sourcePhysicalName)) {
excludeCurrent = true;
break;
}
}
}
// If we're querying the same table we're updating, we must exclude our writes to
// it from being visible.
if (excludeCurrent) {
// If any source tables have uncommitted data prior to last checkpoint,
// then we must create a new checkpoint.
boolean hasUncommittedData = false;
for (TableRef source : sources) {
String sourcePhysicalName = source.getTable().getPhysicalName().getString();
// Tracking uncommitted physical table names is an optimization that prevents us from
// having to do a checkpoint if no data has yet been written. If we're using an
// external transaction context, it's possible that data was already written at the
// current transaction timestamp, so we always checkpoint in that case is we're
// reading and writing to the same table.
if (source.getTable().isTransactional()
&& (isExternalTxContext || uncommittedPhysicalNames.contains(sourcePhysicalName))) {
hasUncommittedData = true;
break;
}
}
phoenixTransactionContext.checkpoint(hasUncommittedData);
if (hasUncommittedData) {
uncommittedPhysicalNames.clear();
}
return true;
}
return false;
}
// Though MutationState is not thread safe in general, this method should be because it may
// be called by TableResultIterator in a multi-threaded manner. Since we do not want to expose
// the Transaction outside of MutationState, this seems reasonable, as the member variables
// would not change as these threads are running. We also clone mutationState to ensure that
// the transaction context won't change due to a commit when auto commit is true.
public Table getHTable(PTable table) throws SQLException {
Table htable = this.getConnection().getQueryServices().getTable(table.getPhysicalName().getBytes());
if (table.isTransactional() && phoenixTransactionContext.isTransactionRunning()) {
// We're only using this table for reading, so we want it wrapped even if it's an index
htable = phoenixTransactionContext.getTransactionalTable(htable, table.isImmutableRows() || table.getType() == PTableType.INDEX);
}
return htable;
}
public PhoenixConnection getConnection() {
return connection;
}
public boolean isTransactionStarted() {
return phoenixTransactionContext.isTransactionRunning();
}
public long getInitialWritePointer() {
return phoenixTransactionContext.getTransactionId(); // First write pointer - won't change with checkpointing
}
// For testing
public long getWritePointer() {
return phoenixTransactionContext.getWritePointer();
}
// For testing
public PhoenixVisibilityLevel getVisibilityLevel() {
return phoenixTransactionContext.getVisibilityLevel();
}
public boolean startTransaction(Provider provider) throws SQLException {
if (provider == null) { return false; }
if (!connection.getQueryServices().getProps()
.getBoolean(QueryServices.TRANSACTIONS_ENABLED, QueryServicesOptions.DEFAULT_TRANSACTIONS_ENABLED)) { throw new SQLExceptionInfo.Builder(
SQLExceptionCode.CANNOT_START_TXN_IF_TXN_DISABLED).build().buildException(); }
if (connection.getSCN() != null) { throw new SQLExceptionInfo.Builder(
SQLExceptionCode.CANNOT_START_TRANSACTION_WITH_SCN_SET).build().buildException(); }
if (phoenixTransactionContext == PhoenixTransactionContext.NULL_CONTEXT) {
phoenixTransactionContext = provider.getTransactionProvider().getTransactionContext(connection);
} else {
if (provider != phoenixTransactionContext.getProvider()) { throw new SQLExceptionInfo.Builder(
SQLExceptionCode.CANNOT_MIX_TXN_PROVIDERS)
.setMessage(phoenixTransactionContext.getProvider().name() + " and " + provider.name()).build()
.buildException(); }
}
if (!isTransactionStarted()) {
// Clear any transactional state in case transaction was ended outside
// of Phoenix so we don't carry the old transaction state forward. We
// cannot call reset() here due to the case of having mutations and
// then transitioning from non transactional to transactional (which
// would end up clearing our uncommitted state).
resetTransactionalState();
phoenixTransactionContext.begin();
return true;
}
return false;
}
public static MutationState emptyMutationState(long maxSize, long maxSizeBytes, PhoenixConnection connection) {
MutationState state = new MutationState(maxSize, maxSizeBytes, connection,
Collections.<TableRef, MultiRowMutationState> emptyMap(), false, null);
state.sizeOffset = 0;
return state;
}
private void throwIfTooBig() throws SQLException {
if (numRows > maxSize) {
resetState();
throw new SQLExceptionInfo.Builder(SQLExceptionCode.MAX_MUTATION_SIZE_EXCEEDED).build().buildException();
}
if (estimatedSize > maxSizeBytes) {
resetState();
throw new SQLExceptionInfo.Builder(SQLExceptionCode.MAX_MUTATION_SIZE_BYTES_EXCEEDED).build()
.buildException();
}
}
public long getUpdateCount() {
return sizeOffset + numRows;
}
private void joinMutationState(TableRef tableRef, MultiRowMutationState srcRows,
Map<TableRef, MultiRowMutationState> dstMutations) {
PTable table = tableRef.getTable();
boolean isIndex = table.getType() == PTableType.INDEX;
boolean incrementRowCount = dstMutations == this.mutations;
MultiRowMutationState existingRows = dstMutations.put(tableRef, srcRows);
if (existingRows != null) { // Rows for that table already exist
// Loop through new rows and replace existing with new
for (Map.Entry<ImmutableBytesPtr, RowMutationState> rowEntry : srcRows.entrySet()) {
// Replace existing row with new row
RowMutationState existingRowMutationState = existingRows.put(rowEntry.getKey(), rowEntry.getValue());
if (existingRowMutationState != null) {
Map<PColumn, byte[]> existingValues = existingRowMutationState.getColumnValues();
if (existingValues != PRow.DELETE_MARKER) {
Map<PColumn, byte[]> newRow = rowEntry.getValue().getColumnValues();
// if new row is PRow.DELETE_MARKER, it means delete, and we don't need to merge it with
// existing row.
if (newRow != PRow.DELETE_MARKER) {
// decrement estimated size by the size of the old row
estimatedSize -= existingRowMutationState.calculateEstimatedSize();
// Merge existing column values with new column values
existingRowMutationState.join(rowEntry.getValue());
// increment estimated size by the size of the new row
estimatedSize += existingRowMutationState.calculateEstimatedSize();
// Now that the existing row has been merged with the new row, replace it back
// again (since it was merged with the new one above).
existingRows.put(rowEntry.getKey(), existingRowMutationState);
}
}
} else {
if (incrementRowCount && !isIndex) { // Don't count index rows in row count
numRows++;
// increment estimated size by the size of the new row
estimatedSize += rowEntry.getValue().calculateEstimatedSize();
}
}
}
// Put the existing one back now that it's merged
dstMutations.put(tableRef, existingRows);
} else {
// Size new map at batch size as that's what it'll likely grow to.
MultiRowMutationState newRows = new MultiRowMutationState(connection.getMutateBatchSize());
newRows.putAll(srcRows);
dstMutations.put(tableRef, newRows);
if (incrementRowCount && !isIndex) {
numRows += srcRows.size();
// if we added all the rows from newMutationState we can just increment the
// estimatedSize by newMutationState.estimatedSize
estimatedSize += srcRows.estimatedSize;
}
}
}
private void joinMutationState(Map<TableRef, MultiRowMutationState> srcMutations,
Map<TableRef, MultiRowMutationState> dstMutations) {
// Merge newMutation with this one, keeping state from newMutation for any overlaps
for (Map.Entry<TableRef, MultiRowMutationState> entry : srcMutations.entrySet()) {
// Replace existing entries for the table with new entries
TableRef tableRef = entry.getKey();
MultiRowMutationState srcRows = entry.getValue();
joinMutationState(tableRef, srcRows, dstMutations);
}
}
/**
* Combine a newer mutation with this one, where in the event of overlaps, the newer one will take precedence.
* Combine any metrics collected for the newer mutation.
*
* @param newMutationState
* the newer mutation state
*/
public void join(MutationState newMutationState) throws SQLException {
if (this == newMutationState) { // Doesn't make sense
return;
}
phoenixTransactionContext.join(newMutationState.getPhoenixTransactionContext());
this.sizeOffset += newMutationState.sizeOffset;
joinMutationState(newMutationState.mutations, this.mutations);
if (!newMutationState.txMutations.isEmpty()) {
if (txMutations.isEmpty()) {
txMutations = Maps.newHashMapWithExpectedSize(mutations.size());
}
joinMutationState(newMutationState.txMutations, this.txMutations);
}
mutationMetricQueue.combineMetricQueues(newMutationState.mutationMetricQueue);
if (readMetricQueue == null) {
readMetricQueue = newMutationState.readMetricQueue;
} else if (readMetricQueue != null && newMutationState.readMetricQueue != null) {
readMetricQueue.combineReadMetrics(newMutationState.readMetricQueue);
}
throwIfTooBig();
}
private static ImmutableBytesPtr getNewRowKeyWithRowTimestamp(ImmutableBytesPtr ptr, long rowTimestamp, PTable table) {
RowKeySchema schema = table.getRowKeySchema();
int rowTimestampColPos = table.getRowTimestampColPos();
Field rowTimestampField = schema.getField(rowTimestampColPos);
byte[] rowTimestampBytes = rowTimestampField.getDataType() == PTimestamp.INSTANCE ?
PTimestamp.INSTANCE.toBytes(new Timestamp(rowTimestamp), rowTimestampField.getSortOrder()) :
PLong.INSTANCE.toBytes(rowTimestamp, rowTimestampField.getSortOrder());
int oldOffset = ptr.getOffset();
int oldLength = ptr.getLength();
// Move the pointer to the start byte of the row timestamp pk
schema.position(ptr, 0, rowTimestampColPos);
byte[] b = ptr.get();
int newOffset = ptr.getOffset();
int length = ptr.getLength();
for (int i = newOffset; i < newOffset + length; i++) {
// modify the underlying bytes array with the bytes of the row timestamp
b[i] = rowTimestampBytes[i - newOffset];
}
// move the pointer back to where it was before.
ptr.set(ptr.get(), oldOffset, oldLength);
return ptr;
}
private Iterator<Pair<PTable, List<Mutation>>> addRowMutations(final TableRef tableRef,
final MultiRowMutationState values, final long mutationTimestamp, final long serverTimestamp,
boolean includeAllIndexes, final boolean sendAll) {
final PTable table = tableRef.getTable();
final List<PTable> indexList = includeAllIndexes ?
Lists.newArrayList(IndexMaintainer.maintainedIndexes(table.getIndexes().iterator())) :
IndexUtil.getClientMaintainedIndexes(table);
final Iterator<PTable> indexes = indexList.iterator();
final List<Mutation> mutationList = Lists.newArrayListWithExpectedSize(values.size());
final List<Mutation> mutationsPertainingToIndex = indexes.hasNext() ? Lists
.newArrayListWithExpectedSize(values.size()) : null;
generateMutations(tableRef, mutationTimestamp, serverTimestamp, values, mutationList,
mutationsPertainingToIndex);
return new Iterator<Pair<PTable, List<Mutation>>>() {
boolean isFirst = true;
Map<byte[], List<Mutation>> indexMutationsMap = null;
@Override
public boolean hasNext() {
return isFirst || indexes.hasNext();
}
@Override
public Pair<PTable, List<Mutation>> next() {
if (isFirst) {
isFirst = false;
return new Pair<>(table, mutationList);
}
PTable index = indexes.next();
List<Mutation> indexMutations = null;
try {
if (!mutationsPertainingToIndex.isEmpty()) {
if (table.isTransactional()) {
if (indexMutationsMap == null) {
PhoenixTxIndexMutationGenerator generator = PhoenixTxIndexMutationGenerator.newGenerator(connection, table,
indexList, mutationsPertainingToIndex.get(0).getAttributesMap());
try (Table htable = connection.getQueryServices().getTable(
table.getPhysicalName().getBytes())) {
Collection<Pair<Mutation, byte[]>> allMutations = generator.getIndexUpdates(htable,
mutationsPertainingToIndex.iterator());
indexMutationsMap = Maps.newTreeMap(Bytes.BYTES_COMPARATOR);
for (Pair<Mutation, byte[]> mutation : allMutations) {
List<Mutation> mutations = indexMutationsMap.get(mutation.getSecond());
if (mutations == null) {
mutations = Lists.newArrayList();
indexMutationsMap.put(mutation.getSecond(), mutations);
}
mutations.add(mutation.getFirst());
}
}
}
indexMutations = indexMutationsMap.get(index.getPhysicalName().getBytes());
} else {
indexMutations = IndexUtil.generateIndexData(table, index, values,
mutationsPertainingToIndex, connection.getKeyValueBuilder(), connection);
}
}
// we may also have to include delete mutations for immutable tables if we are not processing all
// the tables in the mutations map
if (!sendAll) {
TableRef key = new TableRef(index);
MultiRowMutationState multiRowMutationState = mutations.remove(key);
if (multiRowMutationState != null) {
final List<Mutation> deleteMutations = Lists.newArrayList();
generateMutations(key, mutationTimestamp, serverTimestamp, multiRowMutationState, deleteMutations, null);
if (indexMutations == null) {
indexMutations = deleteMutations;
} else {
indexMutations.addAll(deleteMutations);
}
}
}
} catch (SQLException | IOException e) {
throw new IllegalDataException(e);
}
return new Pair<PTable, List<Mutation>>(index,
indexMutations == null ? Collections.<Mutation> emptyList()
: indexMutations);
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
private void generateMutations(final TableRef tableRef, final long mutationTimestamp, final long serverTimestamp,
final MultiRowMutationState values, final List<Mutation> mutationList,
final List<Mutation> mutationsPertainingToIndex) {
final PTable table = tableRef.getTable();
boolean tableWithRowTimestampCol = table.getRowTimestampColPos() != -1;
Iterator<Map.Entry<ImmutableBytesPtr, RowMutationState>> iterator = values.entrySet().iterator();
long timestampToUse = mutationTimestamp;
MultiRowMutationState modifiedValues = new MultiRowMutationState(16);
boolean wildcardIncludesDynamicCols = connection.getQueryServices().getProps().getBoolean(
WILDCARD_QUERY_DYNAMIC_COLS_ATTRIB, DEFAULT_WILDCARD_QUERY_DYNAMIC_COLS_ATTRIB);
while (iterator.hasNext()) {
Map.Entry<ImmutableBytesPtr, RowMutationState> rowEntry = iterator.next();
byte[] onDupKeyBytes = rowEntry.getValue().getOnDupKeyBytes();
boolean hasOnDupKey = onDupKeyBytes != null;
ImmutableBytesPtr key = rowEntry.getKey();
RowMutationState state = rowEntry.getValue();
if (tableWithRowTimestampCol) {
RowTimestampColInfo rowTsColInfo = state.getRowTimestampColInfo();
if (rowTsColInfo.useServerTimestamp()) {
// regenerate the key with this timestamp.
key = getNewRowKeyWithRowTimestamp(key, serverTimestamp, table);
// since we are about to modify the byte[] stored in key (which changes its hashcode)
// we need to remove the entry from the values map and add a new entry with the modified byte[]
modifiedValues.put(key, state);
iterator.remove();
timestampToUse = serverTimestamp;
} else {
if (rowTsColInfo.getTimestamp() != null) {
timestampToUse = rowTsColInfo.getTimestamp();
}
}
}
PRow row = table.newRow(connection.getKeyValueBuilder(), timestampToUse, key, hasOnDupKey);
List<Mutation> rowMutations, rowMutationsPertainingToIndex;
if (rowEntry.getValue().getColumnValues() == PRow.DELETE_MARKER) { // means delete
row.delete();
rowMutations = row.toRowMutations();
// The DeleteCompiler already generates the deletes for indexes, so no need to do it again
rowMutationsPertainingToIndex = Collections.emptyList();
} else {
for (Map.Entry<PColumn, byte[]> valueEntry : rowEntry.getValue().getColumnValues().entrySet()) {
row.setValue(valueEntry.getKey(), valueEntry.getValue());
}
if (wildcardIncludesDynamicCols && row.setAttributesForDynamicColumnsIfReqd()) {
row.setAttributeToProcessDynamicColumnsMetadata();
}
rowMutations = row.toRowMutations();
// Pass through ON DUPLICATE KEY info through mutations
// In the case of the same clause being used on many statements, this will be
// inefficient because we're transmitting the same information for each mutation.
// TODO: use our ServerCache
for (Mutation mutation : rowMutations) {
if (onDupKeyBytes != null) {
mutation.setAttribute(PhoenixIndexBuilder.ATOMIC_OP_ATTRIB, onDupKeyBytes);
}
}
rowMutationsPertainingToIndex = rowMutations;
}
mutationList.addAll(rowMutations);
if (mutationsPertainingToIndex != null) mutationsPertainingToIndex.addAll(rowMutationsPertainingToIndex);
}
values.putAll(modifiedValues);
}
/**
* Get the unsorted list of HBase mutations for the tables with uncommitted data.
*
* @return list of HBase mutations for uncommitted data.
*/
public Iterator<Pair<byte[], List<Mutation>>> toMutations(Long timestamp) {
return toMutations(false, timestamp);
}
public Iterator<Pair<byte[], List<Mutation>>> toMutations() {
return toMutations(false, null);
}
public Iterator<Pair<byte[], List<Mutation>>> toMutations(final boolean includeMutableIndexes) {
return toMutations(includeMutableIndexes, null);
}
public Iterator<Pair<byte[], List<Mutation>>> toMutations(final boolean includeMutableIndexes,
final Long tableTimestamp) {
final Iterator<Map.Entry<TableRef, MultiRowMutationState>> iterator = this.mutations.entrySet().iterator();
if (!iterator.hasNext()) { return Collections.emptyIterator(); }
Long scn = connection.getSCN();
final long serverTimestamp = getTableTimestamp(tableTimestamp, scn);
final long mutationTimestamp = getMutationTimestamp(scn);
return new Iterator<Pair<byte[], List<Mutation>>>() {
private Map.Entry<TableRef, MultiRowMutationState> current = iterator.next();
private Iterator<Pair<byte[], List<Mutation>>> innerIterator = init();
private Iterator<Pair<byte[], List<Mutation>>> init() {
final Iterator<Pair<PTable, List<Mutation>>> mutationIterator =
addRowMutations(current.getKey(), current.getValue(),
mutationTimestamp, serverTimestamp, includeMutableIndexes, true);
return new Iterator<Pair<byte[], List<Mutation>>>() {
@Override
public boolean hasNext() {
return mutationIterator.hasNext();
}
@Override
public Pair<byte[], List<Mutation>> next() {
Pair<PTable, List<Mutation>> pair = mutationIterator.next();
return new Pair<byte[], List<Mutation>>(pair.getFirst().getPhysicalName()
.getBytes(), pair.getSecond());
}
@Override
public void remove() {
mutationIterator.remove();
}
};
}
@Override
public boolean hasNext() {
return innerIterator.hasNext() || iterator.hasNext();
}
@Override
public Pair<byte[], List<Mutation>> next() {
if (!innerIterator.hasNext()) {
current = iterator.next();
innerIterator = init();
}
return innerIterator.next();
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
public static long getTableTimestamp(final Long tableTimestamp, Long scn) {
return (tableTimestamp != null && tableTimestamp != QueryConstants.UNSET_TIMESTAMP) ? tableTimestamp
: (scn == null ? HConstants.LATEST_TIMESTAMP : scn);
}
public static long getMutationTimestamp(final Long scn) {
return scn == null ? HConstants.LATEST_TIMESTAMP : scn;
}
/**
* Validates that the meta data is valid against the server meta data if we haven't yet done so. Otherwise, for
* every UPSERT VALUES call, we'd need to hit the server to see if the meta data has changed.
*
* @return the server time to use for the upsert
* @throws SQLException
* if the table or any columns no longer exist
*/
private long[] validateAll() throws SQLException {
int i = 0;
long[] timeStamps = new long[this.mutations.size()];
for (Map.Entry<TableRef, MultiRowMutationState> entry : mutations.entrySet()) {
TableRef tableRef = entry.getKey();
timeStamps[i++] = validateAndGetServerTimestamp(tableRef, entry.getValue());
}
return timeStamps;
}
private long validateAndGetServerTimestamp(TableRef tableRef, MultiRowMutationState rowKeyToColumnMap)
throws SQLException {
MetaDataClient client = new MetaDataClient(connection);
long serverTimeStamp = tableRef.getTimeStamp();
// If we're auto committing, we've already validated the schema when we got the ColumnResolver,
// so no need to do it again here.
PTable table = tableRef.getTable();
// We generally don't re-resolve SYSTEM tables, but if it relies on ROW_TIMESTAMP, we must
// get the latest timestamp in order to upsert data with the correct server-side timestamp
// in case the ROW_TIMESTAMP is not provided in the UPSERT statement.
boolean hitServerForLatestTimestamp =
table.getRowTimestampColPos() != -1 && table.getType() == PTableType.SYSTEM;
MetaDataMutationResult result = client.updateCache(table.getSchemaName().getString(),
table.getTableName().getString(), hitServerForLatestTimestamp);
PTable resolvedTable = result.getTable();
if (resolvedTable == null) { throw new TableNotFoundException(table.getSchemaName().getString(), table
.getTableName().getString()); }
// Always update tableRef table as the one we've cached may be out of date since when we executed
// the UPSERT VALUES call and updated in the cache before this.
tableRef.setTable(resolvedTable);
List<PTable> indexes = resolvedTable.getIndexes();
for (PTable idxTtable : indexes) {
// If index is still active, but has a non zero INDEX_DISABLE_TIMESTAMP value, then infer that
// our failure mode is block writes on index failure.
if ((idxTtable.getIndexState() == PIndexState.ACTIVE || idxTtable.getIndexState() == PIndexState.PENDING_ACTIVE)
&& idxTtable.getIndexDisableTimestamp() > 0) { throw new SQLExceptionInfo.Builder(
SQLExceptionCode.INDEX_FAILURE_BLOCK_WRITE).setSchemaName(table.getSchemaName().getString())
.setTableName(table.getTableName().getString()).build().buildException(); }
}
long timestamp = result.getMutationTime();
if (timestamp != QueryConstants.UNSET_TIMESTAMP) {
serverTimeStamp = timestamp;
if (result.wasUpdated()) {
List<PColumn> columns = Lists.newArrayListWithExpectedSize(table.getColumns().size());
for (Map.Entry<ImmutableBytesPtr, RowMutationState> rowEntry : rowKeyToColumnMap.entrySet()) {
RowMutationState valueEntry = rowEntry.getValue();
if (valueEntry != null) {
Map<PColumn, byte[]> colValues = valueEntry.getColumnValues();
if (colValues != PRow.DELETE_MARKER) {
for (PColumn column : colValues.keySet()) {
if (!column.isDynamic()) columns.add(column);
}
}
}
}
for (PColumn column : columns) {
if (column != null) {
resolvedTable.getColumnFamily(column.getFamilyName().getString()).getPColumnForColumnName(
column.getName().getString());
}
}
}
}
return serverTimeStamp == QueryConstants.UNSET_TIMESTAMP ? HConstants.LATEST_TIMESTAMP : serverTimeStamp;
}
private static long calculateMutationSize(List<Mutation> mutations) {
long byteSize = 0;
if (GlobalClientMetrics.isMetricsEnabled()) {
for (Mutation mutation : mutations) {
byteSize += PhoenixKeyValueUtil.calculateMutationDiskSize(mutation);
}
}
GLOBAL_MUTATION_BYTES.update(byteSize);
return byteSize;
}
public long getBatchSizeBytes() {
return batchSizeBytes;
}
public long getBatchCount() {
return batchCount;
}
private static class TableInfo {
private final boolean isDataTable;
@Nonnull
private final PName hTableName;
@Nonnull
private final TableRef origTableRef;
private final PTable pTable;
public TableInfo(boolean isDataTable, PName hTableName, TableRef origTableRef, PTable pTable) {
super();
checkNotNull(hTableName);
checkNotNull(origTableRef);
this.isDataTable = isDataTable;
this.hTableName = hTableName;
this.origTableRef = origTableRef;
this.pTable = pTable;
}
public boolean isDataTable() {
return isDataTable;
}
public PName getHTableName() {
return hTableName;
}
public TableRef getOrigTableRef() {
return origTableRef;
}
public PTable getPTable() {
return pTable;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + hTableName.hashCode();
result = prime * result + (isDataTable ? 1231 : 1237);
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
TableInfo other = (TableInfo)obj;
if (!hTableName.equals(other.hTableName)) return false;
if (isDataTable != other.isDataTable) return false;
if (!pTable.equals(other.pTable)) return false;
return true;
}
}
private void send(Iterator<TableRef> tableRefIterator) throws SQLException {
int i = 0;
long[] serverTimeStamps = null;
boolean sendAll = false;
if (tableRefIterator == null) {
serverTimeStamps = validateAll();
tableRefIterator = mutations.keySet().iterator();
sendAll = true;
}
MultiRowMutationState multiRowMutationState;
Map<TableInfo, List<Mutation>> physicalTableMutationMap = Maps.newLinkedHashMap();
// add tracing for this operation
try (TraceScope trace = Tracing.startNewSpan(connection, "Committing mutations to tables")) {
Span span = trace.getSpan();
ImmutableBytesWritable indexMetaDataPtr = new ImmutableBytesWritable();
while (tableRefIterator.hasNext()) {
// at this point we are going through mutations for each table
final TableRef tableRef = tableRefIterator.next();
multiRowMutationState = mutations.get(tableRef);
if (multiRowMutationState == null || multiRowMutationState.isEmpty()) {
continue;
}
// Validate as we go if transactional since we can undo if a problem occurs (which is unlikely)
long
serverTimestamp =
serverTimeStamps == null ?
validateAndGetServerTimestamp(tableRef, multiRowMutationState) :
serverTimeStamps[i++];
final PTable table = tableRef.getTable();
Long scn = connection.getSCN();
long mutationTimestamp = scn == null ?
(table.isTransactional() == true ? HConstants.LATEST_TIMESTAMP : EnvironmentEdgeManager.currentTimeMillis())
: scn;
Iterator<Pair<PTable, List<Mutation>>>
mutationsIterator =
addRowMutations(tableRef, multiRowMutationState, mutationTimestamp,
serverTimestamp, false, sendAll);
// build map from physical table to mutation list
boolean isDataTable = true;
while (mutationsIterator.hasNext()) {
Pair<PTable, List<Mutation>> pair = mutationsIterator.next();
PTable logicalTable = pair.getFirst();
List<Mutation> mutationList = pair.getSecond();
TableInfo tableInfo = new TableInfo(isDataTable, logicalTable.getPhysicalName(),
tableRef, logicalTable);
List<Mutation>
oldMutationList =
physicalTableMutationMap.put(tableInfo, mutationList);
if (oldMutationList != null) mutationList.addAll(0, oldMutationList);
isDataTable = false;
}
// For transactions, track the statement indexes as we send data
// over because our CommitException should include all statements
// involved in the transaction since none of them would have been
// committed in the event of a failure.
if (table.isTransactional()) {
addUncommittedStatementIndexes(multiRowMutationState.values());
if (txMutations.isEmpty()) {
txMutations = Maps.newHashMapWithExpectedSize(mutations.size());
}
// Keep all mutations we've encountered until a commit or rollback.
// This is not ideal, but there's not good way to get the values back
// in the event that we need to replay the commit.
// Copy TableRef so we have the original PTable and know when the
// indexes have changed.
joinMutationState(new TableRef(tableRef), multiRowMutationState, txMutations);
}
}
Map<TableInfo, List<Mutation>> unverifiedIndexMutations = new LinkedHashMap<>();
Map<TableInfo, List<Mutation>> verifiedOrDeletedIndexMutations = new LinkedHashMap<>();
filterIndexCheckerMutations(physicalTableMutationMap, unverifiedIndexMutations,
verifiedOrDeletedIndexMutations);
// Phase 1: Send index mutations with the empty column value = "unverified"
sendMutations(unverifiedIndexMutations.entrySet().iterator(), span, indexMetaDataPtr);
// Phase 2: Send data table and other indexes
sendMutations(physicalTableMutationMap.entrySet().iterator(), span, indexMetaDataPtr);
// Phase 3: Send put index mutations with the empty column value = "verified" and/or delete index mutations
try {
sendMutations(verifiedOrDeletedIndexMutations.entrySet().iterator(), span, indexMetaDataPtr);
} catch (SQLException ex) {
// TODO: add a metric here
LOGGER.warn(
"Ignoring exception that happened during setting index verified value to verified=TRUE "
+ verifiedOrDeletedIndexMutations.toString(),
ex);
}
}
}
private void sendMutations(Iterator<Entry<TableInfo, List<Mutation>>> mutationsIterator, Span span, ImmutableBytesWritable indexMetaDataPtr)
throws SQLException {
while (mutationsIterator.hasNext()) {
Entry<TableInfo, List<Mutation>> pair = mutationsIterator.next();
TableInfo tableInfo = pair.getKey();
byte[] htableName = tableInfo.getHTableName().getBytes();
List<Mutation> mutationList = pair.getValue();
List<List<Mutation>> mutationBatchList =
getMutationBatchList(batchSize, batchSizeBytes, mutationList);
// create a span per target table
// TODO maybe we can be smarter about the table name to string here?
Span child = Tracing.child(span, "Writing mutation batch for table: " + Bytes.toString(htableName));
int retryCount = 0;
boolean shouldRetry = false;
long numMutations = 0;
long mutationSizeBytes = 0;
long mutationCommitTime = 0;
long numFailedMutations = 0;
long startTime = 0;
boolean shouldRetryIndexedMutation = false;
IndexWriteException iwe = null;
do {
TableRef origTableRef = tableInfo.getOrigTableRef();
PTable table = origTableRef.getTable();
table.getIndexMaintainers(indexMetaDataPtr, connection);
final ServerCache cache = tableInfo.isDataTable() ?
IndexMetaDataCacheClient.setMetaDataOnMutations(connection, table,
mutationList, indexMetaDataPtr) : null;
// If we haven't retried yet, retry for this case only, as it's possible that
// a split will occur after we send the index metadata cache to all known
// region servers.
shouldRetry = cache != null;
SQLException sqlE = null;
Table hTable = connection.getQueryServices().getTable(htableName);
try {
if (table.isTransactional()) {
// Track tables to which we've sent uncommitted data
if (tableInfo.isDataTable()) {
uncommittedPhysicalNames.add(table.getPhysicalName().getString());
phoenixTransactionContext.markDMLFence(table);
}
// Only pass true for last argument if the index is being written to on it's own (i.e. initial
// index population), not if it's being written to for normal maintenance due to writes to
// the data table. This case is different because the initial index population does not need
// to be done transactionally since the index is only made active after all writes have
// occurred successfully.
hTable = phoenixTransactionContext.getTransactionalTableWriter(connection, table, hTable, tableInfo.isDataTable() && table.getType() == PTableType.INDEX);
}
numMutations = mutationList.size();
GLOBAL_MUTATION_BATCH_SIZE.update(numMutations);
mutationSizeBytes = calculateMutationSize(mutationList);
startTime = System.currentTimeMillis();
child.addTimelineAnnotation("Attempt " + retryCount);
Iterator<List<Mutation>> itrListMutation = mutationBatchList.iterator();
while (itrListMutation.hasNext()) {
final List<Mutation> mutationBatch = itrListMutation.next();
if (shouldRetryIndexedMutation) {
// if there was an index write failure, retry the mutation in a loop
final Table finalHTable = hTable;
final ImmutableBytesWritable finalindexMetaDataPtr =
indexMetaDataPtr;
final PTable finalPTable = table;
PhoenixIndexFailurePolicy.doBatchWithRetries(new MutateCommand() {
@Override
public void doMutation() throws IOException {
try {
finalHTable.batch(mutationBatch, null);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new IOException(e);
} catch (IOException e) {
e = updateTableRegionCacheIfNecessary(e);
throw e;
}
}
@Override
public List<Mutation> getMutationList() {
return mutationBatch;
}
private IOException
updateTableRegionCacheIfNecessary(IOException ioe) {
SQLException sqlE =
ServerUtil.parseLocalOrRemoteServerException(ioe);
if (sqlE != null
&& sqlE.getErrorCode() == SQLExceptionCode.INDEX_METADATA_NOT_FOUND
.getErrorCode()) {
try {
connection.getQueryServices().clearTableRegionCache(
finalHTable.getName());
IndexMetaDataCacheClient.setMetaDataOnMutations(
connection, finalPTable, mutationBatch,
finalindexMetaDataPtr);
} catch (SQLException e) {
return ServerUtil.createIOException(
"Exception during updating index meta data cache",
ioe);
}
}
return ioe;
}
}, iwe, connection, connection.getQueryServices().getProps());
shouldRetryIndexedMutation = false;
} else {
hTable.batch(mutationBatch, null);
}
// remove each batch from the list once it gets applied
// so when failures happens for any batch we only start
// from that batch only instead of doing duplicate reply of already
// applied batches from entire list, also we can set
// REPLAY_ONLY_INDEX_WRITES for first batch
// only in case of 1121 SQLException
itrListMutation.remove();
batchCount++;
if (LOGGER.isDebugEnabled())
LOGGER.debug("Sent batch of " + mutationBatch.size() + " for "
+ Bytes.toString(htableName));
}
child.stop();
child.stop();
shouldRetry = false;
mutationCommitTime = System.currentTimeMillis() - startTime;
GLOBAL_MUTATION_COMMIT_TIME.update(mutationCommitTime);
numFailedMutations = 0;
// Remove batches as we process them
mutations.remove(origTableRef);
if (tableInfo.isDataTable()) {
numRows -= numMutations;
// recalculate the estimated size
estimatedSize = PhoenixKeyValueUtil.getEstimatedRowMutationSize(mutations);
}
} catch (Exception e) {
mutationCommitTime = System.currentTimeMillis() - startTime;
long serverTimestamp = ServerUtil.parseServerTimestamp(e);
SQLException inferredE = ServerUtil.parseServerExceptionOrNull(e);
if (inferredE != null) {
if (shouldRetry
&& retryCount == 0
&& inferredE.getErrorCode() == SQLExceptionCode.INDEX_METADATA_NOT_FOUND
.getErrorCode()) {
// Swallow this exception once, as it's possible that we split after sending the index
// metadata
// and one of the region servers doesn't have it. This will cause it to have it the next
// go around.
// If it fails again, we don't retry.
String msg = "Swallowing exception and retrying after clearing meta cache on connection. "
+ inferredE;
LOGGER.warn(LogUtil.addCustomAnnotations(msg, connection));
connection.getQueryServices().clearTableRegionCache(TableName.valueOf(htableName));
// add a new child span as this one failed
child.addTimelineAnnotation(msg);
child.stop();
child = Tracing.child(span, "Failed batch, attempting retry");
continue;
} else if (inferredE.getErrorCode() == SQLExceptionCode.INDEX_WRITE_FAILURE.getErrorCode()) {
iwe = PhoenixIndexFailurePolicy.getIndexWriteException(inferredE);
if (iwe != null && !shouldRetryIndexedMutation) {
// For an index write failure, the data table write succeeded,
// so when we retry we need to set REPLAY_WRITES
// for first batch in list only.
for (Mutation m : mutationBatchList.get(0)) {
if (!PhoenixIndexMetaData.isIndexRebuild(
m.getAttributesMap())){
m.setAttribute(BaseScannerRegionObserver.REPLAY_WRITES,
BaseScannerRegionObserver.REPLAY_ONLY_INDEX_WRITES
);
}
PhoenixKeyValueUtil.setTimestamp(m, serverTimestamp);
}
shouldRetry = true;
shouldRetryIndexedMutation = true;
continue;
}
}
e = inferredE;
}
// Throw to client an exception that indicates the statements that
// were not committed successfully.
int[] uncommittedStatementIndexes = getUncommittedStatementIndexes();
sqlE = new CommitException(e, uncommittedStatementIndexes, serverTimestamp);
numFailedMutations = uncommittedStatementIndexes.length;
GLOBAL_MUTATION_BATCH_FAILED_COUNT.update(numFailedMutations);
} finally {
MutationMetric mutationsMetric = new MutationMetric(numMutations, mutationSizeBytes,
mutationCommitTime, numFailedMutations);
mutationMetricQueue.addMetricsForTable(Bytes.toString(htableName), mutationsMetric);
try {
if (cache != null) cache.close();
} finally {
try {
hTable.close();
} catch (IOException e) {
if (sqlE != null) {
sqlE.setNextException(ServerUtil.parseServerException(e));
} else {
sqlE = ServerUtil.parseServerException(e);
}
}
if (sqlE != null) { throw sqlE; }
}
}
} while (shouldRetry && retryCount++ < 1);
}
}
private void filterIndexCheckerMutations(Map<TableInfo, List<Mutation>> mutationMap,
Map<TableInfo, List<Mutation>> unverifiedIndexMutations,
Map<TableInfo, List<Mutation>> verifiedOrDeletedIndexMutations) throws SQLException {
Iterator<Entry<TableInfo, List<Mutation>>> mapIter = mutationMap.entrySet().iterator();
while (mapIter.hasNext()) {
Entry<TableInfo, List<Mutation>> pair = mapIter.next();
TableInfo tableInfo = pair.getKey();
PTable logicalTable = tableInfo.getPTable();
if (tableInfo.getOrigTableRef().getTable().isImmutableRows()
&& IndexUtil.isGlobalIndexCheckerEnabled(connection,
tableInfo.getHTableName())) {
byte[] emptyCF = SchemaUtil.getEmptyColumnFamily(logicalTable);
byte[] emptyCQ = EncodedColumnsUtil.getEmptyKeyValueInfo(logicalTable).getFirst();
List<Mutation> mutations = pair.getValue();
for (Mutation m : mutations) {
if (m == null) {
continue;
}
if (m instanceof Delete) {
Put put = new Put(m.getRow());
put.addColumn(emptyCF, emptyCQ, IndexRegionObserver.getMaxTimestamp(m),
IndexRegionObserver.UNVERIFIED_BYTES);
// The Delete gets marked as unverified in Phase 1 and gets deleted on Phase 3.
addToMap(unverifiedIndexMutations, tableInfo, put);
addToMap(verifiedOrDeletedIndexMutations, tableInfo, m);
} else if (m instanceof Put) {
long timestamp = IndexRegionObserver.getMaxTimestamp(m);
// Phase 1 index mutations are set to unverified
// Send entire mutation with the unverified status
// Remove the empty column prepared by Index codec as we need to change its value
IndexRegionObserver.removeEmptyColumn(m, emptyCF, emptyCQ);
((Put) m).addColumn(emptyCF, emptyCQ, timestamp, IndexRegionObserver.UNVERIFIED_BYTES);
addToMap(unverifiedIndexMutations, tableInfo, m);
// Phase 3 mutations are verified
Put verifiedPut = new Put(m.getRow());
verifiedPut.addColumn(emptyCF, emptyCQ, timestamp, IndexRegionObserver.VERIFIED_BYTES);
addToMap(verifiedOrDeletedIndexMutations, tableInfo, verifiedPut);
} else {
addToMap(unverifiedIndexMutations, tableInfo, m);
}
}
mapIter.remove();
}
}
}
private void addToMap(Map<TableInfo, List<Mutation>> map, TableInfo tableInfo, Mutation mutation) {
List<Mutation> mutations = null;
if (map.containsKey(tableInfo)) {
mutations = map.get(tableInfo);
} else {
mutations = Lists.newArrayList();
}
mutations.add(mutation);
map.put(tableInfo, mutations);
}
/**
*
* Split the list of mutations into multiple lists. since a single row update can contain multiple mutations,
* we only check if the current batch has exceeded the row or size limit for different rows,
* so that mutations for a single row don't end up in different batches.
*
* @param allMutationList
* List of HBase mutations
* @return List of lists of mutations
*/
public static List<List<Mutation>> getMutationBatchList(long batchSize, long batchSizeBytes, List<Mutation> allMutationList) {
Preconditions.checkArgument(batchSize> 1,
"Mutation types are put or delete, for one row all mutations must be in one batch.");
Preconditions.checkArgument(batchSizeBytes > 0, "Batch size must be larger than 0");
List<List<Mutation>> mutationBatchList = Lists.newArrayList();
List<Mutation> currentList = Lists.newArrayList();
List<Mutation> sameRowList = Lists.newArrayList();
long currentBatchSizeBytes = 0L;
for (int i = 0; i < allMutationList.size(); ) {
long sameRowBatchSize = 1L;
Mutation mutation = allMutationList.get(i);
long sameRowMutationSizeBytes = PhoenixKeyValueUtil.calculateMutationDiskSize(mutation);
sameRowList.add(mutation);
while (i + 1 < allMutationList.size() &&
Bytes.compareTo(allMutationList.get(i + 1).getRow(), mutation.getRow()) == 0) {
Mutation sameRowMutation = allMutationList.get(i + 1);
sameRowList.add(sameRowMutation);
sameRowMutationSizeBytes += PhoenixKeyValueUtil.calculateMutationDiskSize(sameRowMutation);
sameRowBatchSize++;
i++;
}
if (currentList.size() + sameRowBatchSize > batchSize ||
currentBatchSizeBytes + sameRowMutationSizeBytes > batchSizeBytes) {
if (currentList.size() > 0) {
mutationBatchList.add(currentList);
currentList = Lists.newArrayList();
currentBatchSizeBytes = 0L;
}
}
currentList.addAll(sameRowList);
currentBatchSizeBytes += sameRowMutationSizeBytes;
sameRowList.clear();
i++;
}
if (currentList.size() > 0) {
mutationBatchList.add(currentList);
}
return mutationBatchList;
}
public byte[] encodeTransaction() throws SQLException {
return phoenixTransactionContext.encodeTransaction();
}
private void addUncommittedStatementIndexes(Collection<RowMutationState> rowMutations) {
for (RowMutationState rowMutationState : rowMutations) {
uncommittedStatementIndexes = joinSortedIntArrays(uncommittedStatementIndexes,
rowMutationState.getStatementIndexes());
}
}
private int[] getUncommittedStatementIndexes() {
for (MultiRowMutationState rowMutationMap : mutations.values()) {
addUncommittedStatementIndexes(rowMutationMap.values());
}
return uncommittedStatementIndexes;
}
@Override
public void close() throws SQLException {}
private void resetState() {
numRows = 0;
estimatedSize = 0;
this.mutations.clear();
phoenixTransactionContext = PhoenixTransactionContext.NULL_CONTEXT;
}
private void resetTransactionalState() {
phoenixTransactionContext.reset();
txMutations = Collections.emptyMap();
uncommittedPhysicalNames.clear();
uncommittedStatementIndexes = EMPTY_STATEMENT_INDEX_ARRAY;
}
public void rollback() throws SQLException {
try {
phoenixTransactionContext.abort();
} finally {
resetState();
}
}
public void commit() throws SQLException {
Map<TableRef, MultiRowMutationState> txMutations = Collections.emptyMap();
int retryCount = 0;
do {
boolean sendSuccessful = false;
boolean retryCommit = false;
SQLException sqlE = null;
try {
send();
txMutations = this.txMutations;
sendSuccessful = true;
} catch (SQLException e) {
sqlE = e;
} finally {
try {
boolean finishSuccessful = false;
try {
if (sendSuccessful) {
phoenixTransactionContext.commit();
finishSuccessful = true;
}
} catch (SQLException e) {
if (LOGGER.isInfoEnabled())
LOGGER.info(e.getClass().getName() + " at timestamp " + getInitialWritePointer()
+ " with retry count of " + retryCount);
retryCommit = (e.getErrorCode() == SQLExceptionCode.TRANSACTION_CONFLICT_EXCEPTION
.getErrorCode() && retryCount < MAX_COMMIT_RETRIES);
if (sqlE == null) {
sqlE = e;
} else {
sqlE.setNextException(e);
}
} finally {
// If send fails or finish fails, abort the tx
if (!finishSuccessful) {
try {
phoenixTransactionContext.abort();
if (LOGGER.isInfoEnabled()) LOGGER.info("Abort successful");
} catch (SQLException e) {
if (LOGGER.isInfoEnabled()) LOGGER.info("Abort failed with " + e);
if (sqlE == null) {
sqlE = e;
} else {
sqlE.setNextException(e);
}
}
}
}
} finally {
TransactionFactory.Provider provider = phoenixTransactionContext.getProvider();
try {
resetState();
} finally {
if (retryCommit) {
startTransaction(provider);
// Add back read fences
Set<TableRef> txTableRefs = txMutations.keySet();
for (TableRef tableRef : txTableRefs) {
PTable dataTable = tableRef.getTable();
phoenixTransactionContext.markDMLFence(dataTable);
}
try {
// Only retry if an index was added
retryCommit = shouldResubmitTransaction(txTableRefs);
} catch (SQLException e) {
retryCommit = false;
if (sqlE == null) {
sqlE = e;
} else {
sqlE.setNextException(e);
}
}
}
if (sqlE != null && !retryCommit) { throw sqlE; }
}
}
}
// Retry commit once if conflict occurred and index was added
if (!retryCommit) {
break;
}
retryCount++;
mutations.putAll(txMutations);
} while (true);
}
/**
* Determines whether indexes were added to mutated tables while the transaction was in progress.
*
* @return true if indexes were added and false otherwise.
* @throws SQLException
*/
private boolean shouldResubmitTransaction(Set<TableRef> txTableRefs) throws SQLException {
if (LOGGER.isInfoEnabled()) LOGGER.info("Checking for index updates as of " + getInitialWritePointer());
MetaDataClient client = new MetaDataClient(connection);
PMetaData cache = connection.getMetaDataCache();
boolean addedAnyIndexes = false;
boolean allImmutableTables = !txTableRefs.isEmpty();
for (TableRef tableRef : txTableRefs) {
PTable dataTable = tableRef.getTable();
List<PTable> oldIndexes;
PTableRef ptableRef = cache.getTableRef(dataTable.getKey());
oldIndexes = ptableRef.getTable().getIndexes();
// Always check at server for metadata change, as it's possible that the table is configured to not check
// for metadata changes
// but in this case, the tx manager is telling us it's likely that there has been a change.
MetaDataMutationResult result = client.updateCache(dataTable.getTenantId(), dataTable.getSchemaName()
.getString(), dataTable.getTableName().getString(), true);
long timestamp = TransactionUtil.getResolvedTime(connection, result);
tableRef.setTimeStamp(timestamp);
PTable updatedDataTable = result.getTable();
if (updatedDataTable == null) { throw new TableNotFoundException(dataTable.getSchemaName().getString(),
dataTable.getTableName().getString()); }
allImmutableTables &= updatedDataTable.isImmutableRows();
tableRef.setTable(updatedDataTable);
if (!addedAnyIndexes) {
// TODO: in theory we should do a deep equals check here, as it's possible
// that an index was dropped and recreated with the same name but different
// indexed/covered columns.
addedAnyIndexes = (!oldIndexes.equals(updatedDataTable.getIndexes()));
if (LOGGER.isInfoEnabled())
LOGGER.info((addedAnyIndexes ? "Updates " : "No updates ") + "as of " + timestamp + " to "
+ updatedDataTable.getName().getString() + " with indexes " + updatedDataTable.getIndexes());
}
}
if (LOGGER.isInfoEnabled())
LOGGER.info((addedAnyIndexes ? "Updates " : "No updates ") + "to indexes as of " + getInitialWritePointer()
+ " over " + (allImmutableTables ? " all immutable tables" : " some mutable tables"));
// If all tables are immutable, we know the conflict we got was due to our DDL/DML fence.
// If any indexes were added, then the conflict might be due to DDL/DML fence.
return allImmutableTables || addedAnyIndexes;
}
/**
* Send to HBase any uncommitted data for transactional tables.
*
* @return true if any data was sent and false otherwise.
* @throws SQLException
*/
public boolean sendUncommitted() throws SQLException {
return sendUncommitted(mutations.keySet().iterator());
}
/**
* Support read-your-own-write semantics by sending uncommitted data to HBase prior to running a query. In this way,
* they are visible to subsequent reads but are not actually committed until commit is called.
*
* @param tableRefs
* @return true if any data was sent and false otherwise.
* @throws SQLException
*/
public boolean sendUncommitted(Iterator<TableRef> tableRefs) throws SQLException {
if (phoenixTransactionContext.isTransactionRunning()) {
// Initialize visibility so that transactions see their own writes.
// The checkpoint() method will set it to not see writes if necessary.
phoenixTransactionContext.setVisibilityLevel(PhoenixVisibilityLevel.SNAPSHOT);
}
Iterator<TableRef> filteredTableRefs = Iterators.filter(tableRefs, new Predicate<TableRef>() {
@Override
public boolean apply(TableRef tableRef) {
return tableRef.getTable().isTransactional();
}
});
if (filteredTableRefs.hasNext()) {
// FIXME: strip table alias to prevent equality check from failing due to alias mismatch on null alias.
// We really should be keying the tables based on the physical table name.
List<TableRef> strippedAliases = Lists.newArrayListWithExpectedSize(mutations.keySet().size());
while (filteredTableRefs.hasNext()) {
TableRef tableRef = filteredTableRefs.next();
// REVIEW: unclear if we need this given we start transactions when resolving a table
if (tableRef.getTable().isTransactional()) {
startTransaction(tableRef.getTable().getTransactionProvider());
}
strippedAliases.add(new TableRef(null, tableRef.getTable(), tableRef.getTimeStamp(), tableRef
.getLowerBoundTimeStamp(), tableRef.hasDynamicCols()));
}
send(strippedAliases.iterator());
return true;
}
return false;
}
public void send() throws SQLException {
send(null);
}
public static int[] joinSortedIntArrays(int[] a, int[] b) {
int[] result = new int[a.length + b.length];
int i = 0, j = 0, k = 0, current;
while (i < a.length && j < b.length) {
current = a[i] < b[j] ? a[i++] : b[j++];
for (; i < a.length && a[i] == current; i++)
;
for (; j < b.length && b[j] == current; j++)
;
result[k++] = current;
}
while (i < a.length) {
for (current = a[i++]; i < a.length && a[i] == current; i++)
;
result[k++] = current;
}
while (j < b.length) {
for (current = b[j++]; j < b.length && b[j] == current; j++)
;
result[k++] = current;
}
return Arrays.copyOf(result, k);
}
@Immutable
public static class RowTimestampColInfo {
private final boolean useServerTimestamp;
private final Long rowTimestamp;
public static final RowTimestampColInfo NULL_ROWTIMESTAMP_INFO = new RowTimestampColInfo(false, null);
public RowTimestampColInfo(boolean autoGenerate, Long value) {
this.useServerTimestamp = autoGenerate;
this.rowTimestamp = value;
}
public boolean useServerTimestamp() {
return useServerTimestamp;
}
public Long getTimestamp() {
return rowTimestamp;
}
}
public static class MultiRowMutationState {
private Map<ImmutableBytesPtr, RowMutationState> rowKeyToRowMutationState;
private long estimatedSize;
public MultiRowMutationState(int size) {
this.rowKeyToRowMutationState = Maps.newHashMapWithExpectedSize(size);
this.estimatedSize = 0;
}
public RowMutationState put(ImmutableBytesPtr ptr, RowMutationState rowMutationState) {
estimatedSize += rowMutationState.calculateEstimatedSize();
return rowKeyToRowMutationState.put(ptr, rowMutationState);
}
public void putAll(MultiRowMutationState other) {
estimatedSize += other.estimatedSize;
rowKeyToRowMutationState.putAll(other.rowKeyToRowMutationState);
}
public boolean isEmpty() {
return rowKeyToRowMutationState.isEmpty();
}
public int size() {
return rowKeyToRowMutationState.size();
}
public Set<Entry<ImmutableBytesPtr, RowMutationState>> entrySet() {
return rowKeyToRowMutationState.entrySet();
}
public void clear() {
rowKeyToRowMutationState.clear();
estimatedSize = 0;
}
public Collection<RowMutationState> values() {
return rowKeyToRowMutationState.values();
}
}
public static class RowMutationState {
@Nonnull
private Map<PColumn, byte[]> columnValues;
private int[] statementIndexes;
@Nonnull
private final RowTimestampColInfo rowTsColInfo;
private byte[] onDupKeyBytes;
private long colValuesSize;
public RowMutationState(@Nonnull Map<PColumn, byte[]> columnValues, long colValuesSize, int statementIndex,
@Nonnull RowTimestampColInfo rowTsColInfo, byte[] onDupKeyBytes) {
checkNotNull(columnValues);
checkNotNull(rowTsColInfo);
this.columnValues = columnValues;
this.statementIndexes = new int[] { statementIndex };
this.rowTsColInfo = rowTsColInfo;
this.onDupKeyBytes = onDupKeyBytes;
this.colValuesSize = colValuesSize;
}
public long calculateEstimatedSize() {
return colValuesSize + statementIndexes.length * SizedUtil.INT_SIZE + SizedUtil.LONG_SIZE
+ (onDupKeyBytes != null ? onDupKeyBytes.length : 0);
}
byte[] getOnDupKeyBytes() {
return onDupKeyBytes;
}
public Map<PColumn, byte[]> getColumnValues() {
return columnValues;
}
int[] getStatementIndexes() {
return statementIndexes;
}
void join(RowMutationState newRow) {
// If we already have a row and the new row has an ON DUPLICATE KEY clause
// ignore the new values (as that's what the server will do).
if (newRow.onDupKeyBytes == null) {
// increment the column value size by the new row column value size
colValuesSize += newRow.colValuesSize;
for (Map.Entry<PColumn, byte[]> entry : newRow.columnValues.entrySet()) {
PColumn col = entry.getKey();
byte[] oldValue = columnValues.put(col, entry.getValue());
if (oldValue != null) {
// decrement column value size by the size of all column values that were replaced
colValuesSize -= (col.getEstimatedSize() + oldValue.length);
}
}
}
// Concatenate ON DUPLICATE KEY bytes to allow multiple
// increments of the same row in the same commit batch.
this.onDupKeyBytes = PhoenixIndexBuilder.combineOnDupKey(this.onDupKeyBytes, newRow.onDupKeyBytes);
statementIndexes = joinSortedIntArrays(statementIndexes, newRow.getStatementIndexes());
}
@Nonnull
RowTimestampColInfo getRowTimestampColInfo() {
return rowTsColInfo;
}
}
public ReadMetricQueue getReadMetricQueue() {
return readMetricQueue;
}
public void setReadMetricQueue(ReadMetricQueue readMetricQueue) {
this.readMetricQueue = readMetricQueue;
}
public MutationMetricQueue getMutationMetricQueue() {
return mutationMetricQueue;
}
}