| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| import os |
| import tempfile |
| import time |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| import pyarrow as pa |
| |
| from pypaimon import CatalogFactory, Schema |
| from pypaimon.common.options.core_options import CoreOptions |
| from pypaimon.snapshot.snapshot_manager import SnapshotManager |
| |
| |
| class AoReaderTest(unittest.TestCase): |
| @classmethod |
| def setUpClass(cls): |
| cls.tempdir = tempfile.mkdtemp() |
| cls.warehouse = os.path.join(cls.tempdir, 'warehouse') |
| cls.catalog = CatalogFactory.create({ |
| 'warehouse': cls.warehouse |
| }) |
| cls.catalog.create_database('default', True) |
| |
| cls.pa_schema = pa.schema([ |
| ('user_id', pa.int32()), |
| ('item_id', pa.int64()), |
| ('behavior', pa.string()), |
| ('dt', pa.string()) |
| ]) |
| cls.expected = pa.Table.from_pydict({ |
| 'user_id': [1, 2, 3, 4, 5, 6, 7, 8], |
| 'item_id': [1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008], |
| 'behavior': ['a', 'b', 'c', None, 'e', 'f', 'g', 'h'], |
| 'dt': ['p1', 'p1', 'p2', 'p1', 'p2', 'p1', 'p2', 'p2'], |
| }, schema=cls.pa_schema) |
| |
| def test_parquet_ao_reader(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt']) |
| self.catalog.create_table('default.test_append_only_parquet', schema, False) |
| table = self.catalog.get_table('default.test_append_only_parquet') |
| self._write_test_table(table) |
| |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| self.assertEqual(actual, self.expected) |
| |
| def test_orc_ao_reader(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt'], options={'file.format': 'orc'}) |
| self.catalog.create_table('default.test_append_only_orc', schema, False) |
| table = self.catalog.get_table('default.test_append_only_orc') |
| self._write_test_table(table) |
| |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| self.assertEqual(actual, self.expected) |
| |
| def test_avro_ao_reader(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt'], options={'file.format': 'avro'}) |
| self.catalog.create_table('default.test_append_only_avro', schema, False) |
| table = self.catalog.get_table('default.test_append_only_avro') |
| self._write_test_table(table) |
| |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| self.assertEqual(actual, self.expected) |
| |
| def test_lance_ao_reader(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt'], options={'file.format': 'lance'}) |
| self.catalog.create_table('default.test_append_only_lance', schema, False) |
| table = self.catalog.get_table('default.test_append_only_lance') |
| self._write_test_table(table) |
| |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| self.assertEqual(actual, self.expected) |
| |
| def test_lance_ao_reader_with_filter(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt'], options={'file.format': 'lance'}) |
| self.catalog.create_table('default.test_append_only_lance_filter', schema, False) |
| table = self.catalog.get_table('default.test_append_only_lance_filter') |
| self._write_test_table(table) |
| |
| predicate_builder = table.new_read_builder().new_predicate_builder() |
| p1 = predicate_builder.less_than('user_id', 7) |
| p2 = predicate_builder.greater_or_equal('user_id', 2) |
| p3 = predicate_builder.between('user_id', 0, 6) # [2/b, 3/c, 4/d, 5/e, 6/f] left |
| p4 = predicate_builder.is_not_in('behavior', ['b', 'e']) # [3/c, 4/d, 6/f] left |
| p5 = predicate_builder.is_in('dt', ['p1']) # exclude 3/c |
| p6 = predicate_builder.is_not_null('behavior') # exclude 4/d |
| g1 = predicate_builder.and_predicates([p1, p2, p3, p4, p5, p6]) |
| read_builder = table.new_read_builder().with_filter(g1) |
| actual = self._read_test_table(read_builder) |
| expected = pa.concat_tables([ |
| self.expected.slice(5, 1) # 6/f |
| ]) |
| self.assertEqual(actual.sort_by('user_id'), expected) |
| |
| def test_append_only_multi_write_once_commit(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt']) |
| self.catalog.create_table('default.test_append_only_multi_once_commit', schema, False) |
| table = self.catalog.get_table('default.test_append_only_multi_once_commit') |
| write_builder = table.new_batch_write_builder() |
| |
| table_write = write_builder.new_write() |
| table_commit = write_builder.new_commit() |
| data1 = { |
| 'user_id': [1, 2, 3, 4], |
| 'item_id': [1001, 1002, 1003, 1004], |
| 'behavior': ['a', 'b', 'c', None], |
| 'dt': ['p1', 'p1', 'p2', 'p1'], |
| } |
| pa_table1 = pa.Table.from_pydict(data1, schema=self.pa_schema) |
| data2 = { |
| 'user_id': [5, 6, 7, 8], |
| 'item_id': [1005, 1006, 1007, 1008], |
| 'behavior': ['e', 'f', 'g', 'h'], |
| 'dt': ['p2', 'p1', 'p2', 'p2'], |
| } |
| pa_table2 = pa.Table.from_pydict(data2, schema=self.pa_schema) |
| |
| table_write.write_arrow(pa_table1) |
| table_write.write_arrow(pa_table2) |
| |
| table_commit.commit(table_write.prepare_commit()) |
| table_write.close() |
| table_commit.close() |
| |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| self.assertEqual(actual, self.expected) |
| |
| def test_over_1000_cols_read(self): |
| num_rows = 1 |
| num_cols = 10 |
| table_name = "default.testBug" |
| # Generate dynamic schema based on column count |
| schema_fields = [] |
| for i in range(1, num_cols + 1): |
| col_name = f'c{i:03d}' |
| if i == 1: |
| schema_fields.append((col_name, pa.string())) # ID column |
| elif i == 2: |
| schema_fields.append((col_name, pa.string())) # Name column |
| elif i == 3: |
| schema_fields.append((col_name, pa.string())) # Category column (partition key) |
| elif i % 4 == 0: |
| schema_fields.append((col_name, pa.float64())) # Float columns |
| elif i % 4 == 1: |
| schema_fields.append((col_name, pa.int32())) # Int columns |
| elif i % 4 == 2: |
| schema_fields.append((col_name, pa.string())) # String columns |
| else: |
| schema_fields.append((col_name, pa.int64())) # Long columns |
| |
| pa_schema = pa.schema(schema_fields) |
| schema = Schema.from_pyarrow_schema( |
| pa_schema, |
| partition_keys=['c003'], # Use c003 as partition key |
| ) |
| |
| # Create table |
| self.catalog.create_table(table_name, schema, False) |
| table = self.catalog.get_table(table_name) |
| |
| # Generate test data |
| np.random.seed(42) # For reproducible results |
| categories = ['Electronics', 'Clothing', 'Books', 'Home', 'Sports', 'Food', 'Toys', 'Beauty', 'Health', 'Auto'] |
| statuses = ['Active', 'Inactive', 'Pending', 'Completed'] |
| |
| # Generate data dictionary |
| test_data = {} |
| for i in range(1, num_cols + 1): |
| col_name = f'c{i:03d}' |
| if i == 1: |
| test_data[col_name] = [f'Product_{j}' for j in range(1, num_rows + 1)] |
| elif i == 2: |
| test_data[col_name] = [f'Product_{j}' for j in range(1, num_rows + 1)] |
| elif i == 3: |
| test_data[col_name] = np.random.choice(categories, num_rows) |
| elif i % 4 == 0: |
| test_data[col_name] = np.random.uniform(1.0, 1000.0, num_rows).round(2) |
| elif i % 4 == 1: |
| test_data[col_name] = np.random.randint(1, 100, num_rows) |
| elif i % 4 == 2: |
| test_data[col_name] = np.random.choice(statuses, num_rows) |
| else: |
| test_data[col_name] = np.random.randint(1640995200, 1672531200, num_rows) |
| |
| test_df = pd.DataFrame(test_data) |
| |
| write_builder = table.new_batch_write_builder() |
| table_write = write_builder.new_write() |
| table_commit = write_builder.new_commit() |
| |
| table_write.write_pandas(test_df) |
| table_commit.commit(table_write.prepare_commit()) |
| table_write.close() |
| table_commit.close() |
| |
| read_builder = table.new_read_builder() |
| table_scan = read_builder.new_scan() |
| table_read = read_builder.new_read() |
| result = table_read.to_pandas(table_scan.plan().splits()) |
| self.assertEqual(result.to_dict(), test_df.to_dict()) |
| |
| def test_ao_reader_with_filter(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt']) |
| self.catalog.create_table('default.test_append_only_filter', schema, False) |
| table = self.catalog.get_table('default.test_append_only_filter') |
| self._write_test_table(table) |
| |
| predicate_builder = table.new_read_builder().new_predicate_builder() |
| p1 = predicate_builder.less_than('user_id', 7) |
| p2 = predicate_builder.greater_or_equal('user_id', 2) |
| p3 = predicate_builder.between('user_id', 0, 6) # [2/b, 3/c, 4/d, 5/e, 6/f] left |
| p4 = predicate_builder.is_not_in('behavior', ['b', 'e']) # [3/c, 4/d, 6/f] left |
| p5 = predicate_builder.is_in('dt', ['p1']) # exclude 3/c |
| p6 = predicate_builder.is_not_null('behavior') # exclude 4/d |
| g1 = predicate_builder.and_predicates([p1, p2, p3, p4, p5, p6]) |
| read_builder = table.new_read_builder().with_filter(g1) |
| actual = self._read_test_table(read_builder) |
| expected = pa.concat_tables([ |
| self.expected.slice(5, 1) # 6/f |
| ]) |
| self.assertEqual(actual.sort_by('user_id'), expected) |
| |
| p7 = predicate_builder.startswith('behavior', 'a') |
| p10 = predicate_builder.equal('item_id', 1002) |
| p11 = predicate_builder.is_null('behavior') |
| p9 = predicate_builder.contains('behavior', 'f') |
| p8 = predicate_builder.endswith('dt', 'p2') |
| g2 = predicate_builder.or_predicates([p7, p8, p9, p10, p11]) |
| read_builder = table.new_read_builder().with_filter(g2) |
| actual = self._read_test_table(read_builder) |
| self.assertEqual(actual.sort_by('user_id'), self.expected) |
| |
| g3 = predicate_builder.and_predicates([g1, g2]) |
| read_builder = table.new_read_builder().with_filter(g3) |
| actual = self._read_test_table(read_builder) |
| expected = pa.concat_tables([ |
| self.expected.slice(5, 1) # 6/f |
| ]) |
| self.assertEqual(actual.sort_by('user_id'), expected) |
| |
| # Same as java, 'not_equal' will also filter records of 'None' value |
| p12 = predicate_builder.not_equal('behavior', 'f') |
| read_builder = table.new_read_builder().with_filter(p12) |
| actual = self._read_test_table(read_builder) |
| expected = pa.concat_tables([ |
| # not only 6/f, but also 4/d will be filtered |
| self.expected.slice(0, 1), # 1/a |
| self.expected.slice(1, 1), # 2/b |
| self.expected.slice(2, 1), # 3/c |
| self.expected.slice(4, 1), # 5/e |
| self.expected.slice(6, 1), # 7/g |
| self.expected.slice(7, 1), # 8/h |
| ]) |
| self.assertEqual(actual.sort_by('user_id'), expected) |
| |
| def test_ao_reader_with_projection(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt']) |
| self.catalog.create_table('default.test_append_only_projection', schema, False) |
| table = self.catalog.get_table('default.test_append_only_projection') |
| self._write_test_table(table) |
| |
| read_builder = table.new_read_builder().with_projection(['dt', 'user_id']) |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| expected = self.expected.select(['dt', 'user_id']) |
| self.assertEqual(actual, expected) |
| |
| def test_avro_ao_reader_with_projection(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt'], options={'file.format': 'avro'}) |
| self.catalog.create_table('default.test_avro_append_only_projection', schema, False) |
| table = self.catalog.get_table('default.test_avro_append_only_projection') |
| self._write_test_table(table) |
| |
| read_builder = table.new_read_builder().with_projection(['dt', 'user_id']) |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| expected = self.expected.select(['dt', 'user_id']) |
| self.assertEqual(actual, expected) |
| |
| def test_ao_reader_with_limit(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt']) |
| self.catalog.create_table('default.test_append_only_limit', schema, False) |
| table = self.catalog.get_table('default.test_append_only_limit') |
| self._write_test_table(table) |
| |
| read_builder = table.new_read_builder().with_limit(1) |
| actual = self._read_test_table(read_builder) |
| # only records from 1st commit (1st split) will be read |
| # might be split of "dt=1" or split of "dt=2" |
| self.assertEqual(actual.num_rows, 4) |
| |
| def test_incremental_timestamp(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt']) |
| self.catalog.create_table('default.test_incremental_parquet', schema, False) |
| table = self.catalog.get_table('default.test_incremental_parquet') |
| timestamp = int(time.time() * 1000) |
| self._write_test_table(table) |
| |
| snapshot_manager = SnapshotManager(table) |
| t1 = snapshot_manager.get_snapshot_by_id(1).time_millis |
| t2 = snapshot_manager.get_snapshot_by_id(2).time_millis |
| # test 1 |
| table = table.copy({CoreOptions.INCREMENTAL_BETWEEN_TIMESTAMP.key(): str(timestamp - 1) + ',' + str(timestamp)}) |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder) |
| self.assertEqual(len(actual), 0) |
| # test 2 |
| table = table.copy({CoreOptions.INCREMENTAL_BETWEEN_TIMESTAMP.key(): str(timestamp) + ',' + str(t2)}) |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| self.assertEqual(self.expected, actual) |
| # test 3 |
| table = table.copy({CoreOptions.INCREMENTAL_BETWEEN_TIMESTAMP.key(): str(t1) + ',' + str(t2)}) |
| read_builder = table.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| expected = self.expected.slice(4, 4) |
| self.assertEqual(expected, actual) |
| |
| def test_incremental_read_multi_snapshots(self): |
| schema = Schema.from_pyarrow_schema(self.pa_schema, partition_keys=['dt']) |
| self.catalog.create_table('default.test_incremental_100', schema, False) |
| table = self.catalog.get_table('default.test_incremental_100') |
| |
| write_builder = table.new_batch_write_builder() |
| for i in range(1, 101): |
| table_write = write_builder.new_write() |
| table_commit = write_builder.new_commit() |
| pa_table = pa.Table.from_pydict({ |
| 'user_id': [i], |
| 'item_id': [1000 + i], |
| 'behavior': [f'snap{i}'], |
| 'dt': ['p1' if i % 2 == 1 else 'p2'], |
| }, schema=self.pa_schema) |
| table_write.write_arrow(pa_table) |
| table_commit.commit(table_write.prepare_commit()) |
| table_write.close() |
| table_commit.close() |
| |
| snapshot_manager = SnapshotManager(table) |
| t10 = snapshot_manager.get_snapshot_by_id(10).time_millis |
| t20 = snapshot_manager.get_snapshot_by_id(20).time_millis |
| |
| table_inc = table.copy({CoreOptions.INCREMENTAL_BETWEEN_TIMESTAMP.key(): f"{t10},{t20}"}) |
| read_builder = table_inc.new_read_builder() |
| actual = self._read_test_table(read_builder).sort_by('user_id') |
| |
| expected = pa.Table.from_pydict({ |
| 'user_id': list(range(11, 21)), |
| 'item_id': [1000 + i for i in range(11, 21)], |
| 'behavior': [f'snap{i}' for i in range(11, 21)], |
| 'dt': ['p1' if i % 2 == 1 else 'p2' for i in range(11, 21)], |
| }, schema=self.pa_schema).sort_by('user_id') |
| self.assertEqual(expected, actual) |
| |
| def _write_test_table(self, table): |
| write_builder = table.new_batch_write_builder() |
| |
| # first write |
| table_write = write_builder.new_write() |
| table_commit = write_builder.new_commit() |
| data1 = { |
| 'user_id': [1, 2, 3, 4], |
| 'item_id': [1001, 1002, 1003, 1004], |
| 'behavior': ['a', 'b', 'c', None], |
| 'dt': ['p1', 'p1', 'p2', 'p1'], |
| } |
| pa_table = pa.Table.from_pydict(data1, schema=self.pa_schema) |
| table_write.write_arrow(pa_table) |
| table_commit.commit(table_write.prepare_commit()) |
| table_write.close() |
| table_commit.close() |
| |
| # second write |
| table_write = write_builder.new_write() |
| table_commit = write_builder.new_commit() |
| data2 = { |
| 'user_id': [5, 6, 7, 8], |
| 'item_id': [1005, 1006, 1007, 1008], |
| 'behavior': ['e', 'f', 'g', 'h'], |
| 'dt': ['p2', 'p1', 'p2', 'p2'], |
| } |
| pa_table = pa.Table.from_pydict(data2, schema=self.pa_schema) |
| table_write.write_arrow(pa_table) |
| table_commit.commit(table_write.prepare_commit()) |
| table_write.close() |
| table_commit.close() |
| |
| def _read_test_table(self, read_builder): |
| table_read = read_builder.new_read() |
| splits = read_builder.new_scan().plan().splits() |
| return table_read.to_arrow(splits) |