| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| """ |
| Module to read a Paimon table into a Ray Dataset, by using the Ray Datasource API. |
| """ |
| import heapq |
| import itertools |
| import logging |
| from functools import partial |
| from typing import List, Optional, Iterable |
| |
| import pyarrow |
| from packaging.version import parse |
| import ray |
| |
| from pypaimon.read.split import Split |
| from pypaimon.read.table_read import TableRead |
| from pypaimon.schema.data_types import PyarrowFieldParser |
| |
| logger = logging.getLogger(__name__) |
| |
| # Ray version constants for compatibility |
| RAY_VERSION_SCHEMA_IN_READ_TASK = "2.48.0" # Schema moved from BlockMetadata to ReadTask |
| RAY_VERSION_PER_TASK_ROW_LIMIT = "2.52.0" # per_task_row_limit parameter introduced |
| |
| from ray.data.datasource import Datasource |
| |
| |
| class PaimonDatasource(Datasource): |
| """ |
| Ray Data Datasource implementation for reading Paimon tables. |
| |
| This datasource enables distributed parallel reading of Paimon table splits, |
| allowing Ray to read multiple splits concurrently across the cluster. |
| """ |
| |
| def __init__(self, table_read: TableRead, splits: List[Split]): |
| """ |
| Initialize PaimonDatasource. |
| |
| Args: |
| table_read: TableRead instance for reading data |
| splits: List of splits to read |
| """ |
| self.table_read = table_read |
| self.splits = splits |
| self._schema = None |
| |
| def get_name(self) -> str: |
| identifier = self.table_read.table.identifier |
| table_name = identifier.get_full_name() if hasattr(identifier, 'get_full_name') else str(identifier) |
| return f"PaimonTable({table_name})" |
| |
| def estimate_inmemory_data_size(self) -> Optional[int]: |
| if not self.splits: |
| return 0 |
| |
| # Sum up file sizes from all splits |
| total_size = sum(split.file_size for split in self.splits) |
| return total_size if total_size > 0 else None |
| |
| @staticmethod |
| def _distribute_splits_into_equal_chunks( |
| splits: Iterable[Split], n_chunks: int |
| ) -> List[List[Split]]: |
| """ |
| Implement a greedy knapsack algorithm to distribute the splits across tasks, |
| based on their file size, as evenly as possible. |
| """ |
| chunks = [list() for _ in range(n_chunks)] |
| chunk_sizes = [(0, chunk_id) for chunk_id in range(n_chunks)] |
| heapq.heapify(chunk_sizes) |
| |
| # From largest to smallest, add the splits to the smallest chunk one at a time |
| for split in sorted( |
| splits, key=lambda s: s.file_size if hasattr(s, 'file_size') and s.file_size > 0 else 0, reverse=True |
| ): |
| smallest_chunk = heapq.heappop(chunk_sizes) |
| chunks[smallest_chunk[1]].append(split) |
| split_size = split.file_size if hasattr(split, 'file_size') and split.file_size > 0 else 0 |
| heapq.heappush( |
| chunk_sizes, |
| (smallest_chunk[0] + split_size, smallest_chunk[1]), |
| ) |
| |
| return chunks |
| |
| def get_read_tasks(self, parallelism: int, **kwargs) -> List: |
| """Return a list of read tasks that can be executed in parallel.""" |
| from ray.data.datasource import ReadTask |
| from ray.data.block import BlockMetadata |
| |
| per_task_row_limit = kwargs.get('per_task_row_limit', None) |
| |
| # Validate parallelism parameter |
| if parallelism < 1: |
| raise ValueError(f"parallelism must be at least 1, got {parallelism}") |
| |
| # Get schema for metadata |
| if self._schema is None: |
| self._schema = PyarrowFieldParser.from_paimon_schema(self.table_read.read_type) |
| |
| # Adjust parallelism if it exceeds the number of splits |
| if parallelism > len(self.splits): |
| parallelism = len(self.splits) |
| logger.warning( |
| f"Reducing the parallelism to {parallelism}, as that is the number of splits" |
| ) |
| |
| # Store necessary information for creating readers in Ray workers |
| # Extract these to avoid serializing the entire self object in closures |
| table = self.table_read.table |
| predicate = self.table_read.predicate |
| read_type = self.table_read.read_type |
| schema = self._schema |
| |
| # Create a partial function to avoid capturing self in closure |
| # This reduces serialization overhead (see https://github.com/ray-project/ray/issues/49107) |
| def _get_read_task( |
| splits: List[Split], |
| table=table, |
| predicate=predicate, |
| read_type=read_type, |
| schema=schema, |
| ) -> Iterable[pyarrow.Table]: |
| """Read function that will be executed by Ray workers.""" |
| from pypaimon.read.table_read import TableRead |
| worker_table_read = TableRead(table, predicate, read_type) |
| |
| # Read all splits in this chunk |
| arrow_table = worker_table_read.to_arrow(splits) |
| |
| # Return as a list to allow Ray to split into multiple blocks if needed |
| if arrow_table is not None and arrow_table.num_rows > 0: |
| return [arrow_table] |
| else: |
| # Return empty table with correct schema |
| empty_table = pyarrow.Table.from_arrays( |
| [pyarrow.array([], type=field.type) for field in schema], |
| schema=schema |
| ) |
| return [empty_table] |
| |
| # Use partial to create read function without capturing self |
| get_read_task = partial( |
| _get_read_task, |
| table=table, |
| predicate=predicate, |
| read_type=read_type, |
| schema=schema, |
| ) |
| |
| read_tasks = [] |
| |
| # Distribute splits across tasks using load balancing algorithm |
| for chunk_splits in self._distribute_splits_into_equal_chunks(self.splits, parallelism): |
| if not chunk_splits: |
| continue |
| |
| # Calculate metadata for this chunk |
| total_rows = 0 |
| total_size = 0 |
| |
| for split in chunk_splits: |
| if predicate is None: |
| # Only estimate rows if no predicate (predicate filtering changes row count) |
| if hasattr(split, 'row_count') and split.row_count > 0: |
| total_rows += split.row_count |
| if hasattr(split, 'file_size') and split.file_size > 0: |
| total_size += split.file_size |
| |
| input_files = list(itertools.chain.from_iterable( |
| split.file_paths |
| for split in chunk_splits |
| if hasattr(split, 'file_paths') and split.file_paths |
| )) |
| |
| # For PrimaryKey tables, we can't accurately estimate num_rows before merge |
| if table and table.is_primary_key_table: |
| num_rows = None # Let Ray calculate actual row count after merge |
| elif predicate is not None: |
| num_rows = None # Can't estimate with predicate filtering |
| else: |
| num_rows = total_rows if total_rows > 0 else None |
| size_bytes = total_size if total_size > 0 else None |
| |
| metadata_kwargs = { |
| 'num_rows': num_rows, |
| 'size_bytes': size_bytes, |
| 'input_files': input_files if input_files else None, |
| 'exec_stats': None, # Will be populated by Ray during execution |
| } |
| |
| if parse(ray.__version__) < parse(RAY_VERSION_SCHEMA_IN_READ_TASK): |
| metadata_kwargs['schema'] = schema |
| |
| metadata = BlockMetadata(**metadata_kwargs) |
| |
| read_fn = partial(get_read_task, chunk_splits) |
| read_task_kwargs = { |
| 'read_fn': read_fn, |
| 'metadata': metadata, |
| } |
| |
| if parse(ray.__version__) >= parse(RAY_VERSION_SCHEMA_IN_READ_TASK): |
| read_task_kwargs['schema'] = schema |
| |
| if parse(ray.__version__) >= parse(RAY_VERSION_PER_TASK_ROW_LIMIT) and per_task_row_limit is not None: |
| read_task_kwargs['per_task_row_limit'] = per_task_row_limit |
| |
| read_tasks.append(ReadTask(**read_task_kwargs)) |
| |
| return read_tasks |