| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| """VectorSearch for performing vector similarity search.""" |
| |
| from dataclasses import dataclass, field |
| from typing import List, Optional, Union |
| import numpy as np |
| |
| |
| @dataclass |
| class VectorSearch: |
| """ |
| VectorSearch to perform vector similarity search. |
| |
| Attributes: |
| vector: The query vector (float[] or byte[]) |
| limit: Maximum number of results to return |
| field_name: Name of the vector field to search |
| include_row_ids: Optional bitmap of row IDs to include in search |
| """ |
| |
| vector: Union[List[float], np.ndarray] |
| limit: int |
| field_name: str |
| include_row_ids: Optional['RoaringBitmap64'] = field(default=None) |
| |
| def __post_init__(self): |
| if self.vector is None: |
| raise ValueError("Search vector cannot be None") |
| if self.limit <= 0: |
| raise ValueError(f"Limit must be positive, got: {self.limit}") |
| if not self.field_name: |
| raise ValueError("Field name cannot be null or empty") |
| |
| # Convert list to numpy array if needed |
| if isinstance(self.vector, list): |
| self.vector = np.array(self.vector, dtype=np.float32) |
| |
| def with_include_row_ids(self, include_row_ids: 'RoaringBitmap64') -> 'VectorSearch': |
| """Return a new VectorSearch with the specified include_row_ids.""" |
| return VectorSearch( |
| vector=self.vector, |
| limit=self.limit, |
| field_name=self.field_name, |
| include_row_ids=include_row_ids |
| ) |
| |
| def offset_range(self, from_: int, to: int) -> 'VectorSearch': |
| """ |
| Create a new VectorSearch with include_row_ids offset to the given range. |
| """ |
| from pypaimon.globalindex.roaring_bitmap import RoaringBitmap64 |
| |
| if self.include_row_ids is not None: |
| range_bitmap = RoaringBitmap64() |
| range_bitmap.add_range(from_, to) |
| and_result = RoaringBitmap64.and_(range_bitmap, self.include_row_ids) |
| |
| offset_bitmap = RoaringBitmap64() |
| for row_id in and_result: |
| offset_bitmap.add(row_id - from_) |
| |
| return VectorSearch( |
| vector=self.vector, |
| limit=self.limit, |
| field_name=self.field_name, |
| include_row_ids=offset_bitmap |
| ) |
| return self |
| |
| def visit(self, visitor: 'GlobalIndexReader') -> Optional['GlobalIndexResult']: |
| """Visit the global index reader with this vector search.""" |
| return visitor.visit_vector_search(self) |
| |
| def __repr__(self) -> str: |
| return f"VectorSearch(field_name={self.field_name}, limit={self.limit})" |