blob: 7f023ed7effe06eed3e7cceb545407c235fcc942 [file] [log] [blame]
<!DOCTYPE HTML>
<html lang="en-US">
<head>
<meta charset="UTF-8">
<title>ORC Specification v0</title>
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="generator" content="Jekyll v3.8.6">
<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Lato:300,300italic,400,400italic,700,700italic,900">
<link rel="stylesheet" href="/css/screen.css">
<link rel="icon" type="image/x-icon" href="/favicon.ico">
<!--[if lt IE 9]>
<script src="/js/html5shiv.min.js"></script>
<script src="/js/respond.min.js"></script>
<![endif]-->
</head>
<body class="wrap">
<header role="banner">
<nav class="mobile-nav show-on-mobiles">
<ul>
<li class="">
<a href="/">Home</a>
</li>
<li class="">
<a href="/releases/"><span class="show-on-mobiles">Rel</span>
<span class="hide-on-mobiles">Releases</span></a>
</li>
<li class="">
<a href="/docs/"><span class="show-on-mobiles">Doc</span>
<span class="hide-on-mobiles">Documentation</span></a>
</li>
<li class="">
<a href="/talks/"><span class="show-on-mobiles">Talk</span>
<span class="hide-on-mobiles">Talks</span></a>
</li>
<li class="">
<a href="/news/">News</a>
</li>
<li class="">
<a href="/develop/"><span class="show-on-mobiles">Dev</span>
<span class="hide-on-mobiles">Develop</span></a>
</li>
<li class="">
<a href="/help/">Help</a>
</li>
</ul>
</nav>
<div class="grid">
<div class="unit one-quarter center-on-mobiles">
<h1>
<a href="/">
<span class="sr-only">Apache ORC</span>
<img src="/img/logo.png" width="249" height="101" alt="ORC Logo">
</a>
</h1>
</div>
<nav class="main-nav unit three-quarters hide-on-mobiles">
<ul>
<li class="">
<a href="/">Home</a>
</li>
<li class="">
<a href="/releases/"><span class="show-on-mobiles">Rel</span>
<span class="hide-on-mobiles">Releases</span></a>
</li>
<li class="">
<a href="/docs/"><span class="show-on-mobiles">Doc</span>
<span class="hide-on-mobiles">Documentation</span></a>
</li>
<li class="">
<a href="/talks/"><span class="show-on-mobiles">Talk</span>
<span class="hide-on-mobiles">Talks</span></a>
</li>
<li class="">
<a href="/news/">News</a>
</li>
<li class="">
<a href="/develop/"><span class="show-on-mobiles">Dev</span>
<span class="hide-on-mobiles">Develop</span></a>
</li>
<li class="">
<a href="/help/">Help</a>
</li>
</ul>
</nav>
</div>
</header>
<section class="standalone">
<div class="grid">
<div class="unit whole">
<article>
<h1>ORC Specification v0</h1>
<p>This version of the file format was originally released as part of
Hive 0.11.</p>
<h1 id="motivation">Motivation</h1>
<p>Hive’s RCFile was the standard format for storing tabular data in
Hadoop for several years. However, RCFile has limitations because it
treats each column as a binary blob without semantics. In Hive 0.11 we
added a new file format named Optimized Row Columnar (ORC) file that
uses and retains the type information from the table definition. ORC
uses type specific readers and writers that provide light weight
compression techniques such as dictionary encoding, bit packing, delta
encoding, and run length encoding – resulting in dramatically smaller
files. Additionally, ORC can apply generic compression using zlib, or
Snappy on top of the lightweight compression for even smaller
files. However, storage savings are only part of the gain. ORC
supports projection, which selects subsets of the columns for reading,
so that queries reading only one column read only the required
bytes. Furthermore, ORC files include light weight indexes that
include the minimum and maximum values for each column in each set of
10,000 rows and the entire file. Using pushdown filters from Hive, the
file reader can skip entire sets of rows that aren’t important for
this query.</p>
<p><img src="/img/OrcFileLayout.png" alt="ORC file structure" /></p>
<h1 id="file-tail">File Tail</h1>
<p>Since HDFS does not support changing the data in a file after it is
written, ORC stores the top level index at the end of the file. The
overall structure of the file is given in the figure above. The
file’s tail consists of 3 parts; the file metadata, file footer and
postscript.</p>
<p>The metadata for ORC is stored using
<a href="https://s.apache.org/protobuf_encoding">Protocol Buffers</a>, which provides
the ability to add new fields without breaking readers. This document
incorporates the Protobuf definition from the
<a href="https://github.com/apache/orc/blob/main/proto/orc_proto.proto">ORC source code</a> and the
reader is encouraged to review the Protobuf encoding if they need to
understand the byte-level encoding</p>
<h2 id="postscript">Postscript</h2>
<p>The Postscript section provides the necessary information to interpret
the rest of the file including the length of the file’s Footer and
Metadata sections, the version of the file, and the kind of general
compression used (eg. none, zlib, or snappy). The Postscript is never
compressed and ends one byte before the end of the file. The version
stored in the Postscript is the lowest version of Hive that is
guaranteed to be able to read the file and it stored as a sequence of
the major and minor version. This version is stored as [0, 11].</p>
<p>The process of reading an ORC file works backwards through the
file. Rather than making multiple short reads, the ORC reader reads
the last 16k bytes of the file with the hope that it will contain both
the Footer and Postscript sections. The final byte of the file
contains the serialized length of the Postscript, which must be less
than 256 bytes. Once the Postscript is parsed, the compressed
serialized length of the Footer is known and it can be decompressed
and parsed.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message PostScript {
// the length of the footer section in bytes
optional uint64 footerLength = 1;
// the kind of generic compression used
optional CompressionKind compression = 2;
// the maximum size of each compression chunk
optional uint64 compressionBlockSize = 3;
// the version of the writer
repeated uint32 version = 4 [packed = true];
// the length of the metadata section in bytes
optional uint64 metadataLength = 5;
// the fixed string "ORC"
optional string magic = 8000;
}
</code></pre></div></div>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>enum CompressionKind {
NONE = 0;
ZLIB = 1;
SNAPPY = 2;
LZO = 3;
LZ4 = 4;
ZSTD = 5;
}
</code></pre></div></div>
<h2 id="footer">Footer</h2>
<p>The Footer section contains the layout of the body of the file, the
type schema information, the number of rows, and the statistics about
each of the columns.</p>
<p>The file is broken in to three parts- Header, Body, and Tail. The
Header consists of the bytes “ORC’’ to support tools that want to
scan the front of the file to determine the type of the file. The Body
contains the rows and indexes, and the Tail gives the file level
information as described in this section.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message Footer {
// the length of the file header in bytes (always 3)
optional uint64 headerLength = 1;
// the length of the file header and body in bytes
optional uint64 contentLength = 2;
// the information about the stripes
repeated StripeInformation stripes = 3;
// the schema information
repeated Type types = 4;
// the user metadata that was added
repeated UserMetadataItem metadata = 5;
// the total number of rows in the file
optional uint64 numberOfRows = 6;
// the statistics of each column across the file
repeated ColumnStatistics statistics = 7;
// the maximum number of rows in each index entry
optional uint32 rowIndexStride = 8;
}
</code></pre></div></div>
<h3 id="stripe-information">Stripe Information</h3>
<p>The body of the file is divided into stripes. Each stripe is self
contained and may be read using only its own bytes combined with the
file’s Footer and Postscript. Each stripe contains only entire rows so
that rows never straddle stripe boundaries. Stripes have three
sections: a set of indexes for the rows within the stripe, the data
itself, and a stripe footer. Both the indexes and the data sections
are divided by columns so that only the data for the required columns
needs to be read.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message StripeInformation {
// the start of the stripe within the file
optional uint64 offset = 1;
// the length of the indexes in bytes
optional uint64 indexLength = 2;
// the length of the data in bytes
optional uint64 dataLength = 3;
// the length of the footer in bytes
optional uint64 footerLength = 4;
// the number of rows in the stripe
optional uint64 numberOfRows = 5;
}
</code></pre></div></div>
<h3 id="type-information">Type Information</h3>
<p>All of the rows in an ORC file must have the same schema. Logically
the schema is expressed as a tree as in the figure below, where
the compound types have subcolumns under them.</p>
<p><img src="/img/TreeWriters.png" alt="ORC column structure" /></p>
<p>The equivalent Hive DDL would be:</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>create table Foobar (
myInt int,
myMap map&lt;string,
struct&lt;myString : string,
myDouble: double&gt;&gt;,
myTime timestamp
);
</code></pre></div></div>
<p>The type tree is flattened in to a list via a pre-order traversal
where each type is assigned the next id. Clearly the root of the type
tree is always type id 0. Compound types have a field named subtypes
that contains the list of their children’s type ids.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message Type {
enum Kind {
BOOLEAN = 0;
BYTE = 1;
SHORT = 2;
INT = 3;
LONG = 4;
FLOAT = 5;
DOUBLE = 6;
STRING = 7;
BINARY = 8;
TIMESTAMP = 9;
LIST = 10;
MAP = 11;
STRUCT = 12;
UNION = 13;
DECIMAL = 14;
DATE = 15;
VARCHAR = 16;
CHAR = 17;
}
// the kind of this type
required Kind kind = 1;
// the type ids of any subcolumns for list, map, struct, or union
repeated uint32 subtypes = 2 [packed=true];
// the list of field names for struct
repeated string fieldNames = 3;
// the maximum length of the type for varchar or char in UTF-8 characters
optional uint32 maximumLength = 4;
// the precision and scale for decimal
optional uint32 precision = 5;
optional uint32 scale = 6;
}
</code></pre></div></div>
<h3 id="column-statistics">Column Statistics</h3>
<p>The goal of the column statistics is that for each column, the writer
records the count and depending on the type other useful fields. For
most of the primitive types, it records the minimum and maximum
values; and for numeric types it additionally stores the sum.
From Hive 1.1.0 onwards, the column statistics will also record if
there are any null values within the row group by setting the hasNull flag.
The hasNull flag is used by ORC’s predicate pushdown to better answer
‘IS NULL’ queries.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message ColumnStatistics {
// the number of values
optional uint64 numberOfValues = 1;
// At most one of these has a value for any column
optional IntegerStatistics intStatistics = 2;
optional DoubleStatistics doubleStatistics = 3;
optional StringStatistics stringStatistics = 4;
optional BucketStatistics bucketStatistics = 5;
optional DecimalStatistics decimalStatistics = 6;
optional DateStatistics dateStatistics = 7;
optional BinaryStatistics binaryStatistics = 8;
optional TimestampStatistics timestampStatistics = 9;
optional bool hasNull = 10;
}
</code></pre></div></div>
<p>For integer types (tinyint, smallint, int, bigint), the column
statistics includes the minimum, maximum, and sum. If the sum
overflows long at any point during the calculation, no sum is
recorded.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message IntegerStatistics {
optional sint64 minimum = 1;
optional sint64 maximum = 2;
optional sint64 sum = 3;
}
</code></pre></div></div>
<p>For floating point types (float, double), the column statistics
include the minimum, maximum, and sum. If the sum overflows a double,
no sum is recorded.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message DoubleStatistics {
optional double minimum = 1;
optional double maximum = 2;
optional double sum = 3;
}
</code></pre></div></div>
<p>For strings, the minimum value, maximum value, and the sum of the
lengths of the values are recorded.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message StringStatistics {
optional string minimum = 1;
optional string maximum = 2;
// sum will store the total length of all strings
optional sint64 sum = 3;
}
</code></pre></div></div>
<p>For booleans, the statistics include the count of false and true values.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message BucketStatistics {
repeated uint64 count = 1 [packed=true];
}
</code></pre></div></div>
<p>For decimals, the minimum, maximum, and sum are stored.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message DecimalStatistics {
optional string minimum = 1;
optional string maximum = 2;
optional string sum = 3;
}
</code></pre></div></div>
<p>Date columns record the minimum and maximum values as the number of
days since the UNIX epoch (1/1/1970 in UTC).</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message DateStatistics {
// min,max values saved as days since epoch
optional sint32 minimum = 1;
optional sint32 maximum = 2;
}
</code></pre></div></div>
<p>Timestamp columns record the minimum and maximum values as the number of
milliseconds since the epoch (1/1/2015).</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message TimestampStatistics {
// min,max values saved as milliseconds since epoch
optional sint64 minimum = 1;
optional sint64 maximum = 2;
}
</code></pre></div></div>
<p>Binary columns store the aggregate number of bytes across all of the values.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message BinaryStatistics {
// sum will store the total binary blob length
optional sint64 sum = 1;
}
</code></pre></div></div>
<h3 id="user-metadata">User Metadata</h3>
<p>The user can add arbitrary key/value pairs to an ORC file as it is
written. The contents of the keys and values are completely
application defined, but the key is a string and the value is
binary. Care should be taken by applications to make sure that their
keys are unique and in general should be prefixed with an organization
code.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message UserMetadataItem {
// the user defined key
required string name = 1;
// the user defined binary value
required bytes value = 2;
}
</code></pre></div></div>
<h3 id="file-metadata">File Metadata</h3>
<p>The file Metadata section contains column statistics at the stripe
level granularity. These statistics enable input split elimination
based on the predicate push-down evaluated per a stripe.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message StripeStatistics {
repeated ColumnStatistics colStats = 1;
}
</code></pre></div></div>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message Metadata {
repeated StripeStatistics stripeStats = 1;
}
</code></pre></div></div>
<h1 id="compression">Compression</h1>
<p>If the ORC file writer selects a generic compression codec (zlib or
snappy), every part of the ORC file except for the Postscript is
compressed with that codec. However, one of the requirements for ORC
is that the reader be able to skip over compressed bytes without
decompressing the entire stream. To manage this, ORC writes compressed
streams in chunks with headers as in the figure below.
To handle uncompressable data, if the compressed data is larger than
the original, the original is stored and the isOriginal flag is
set. Each header is 3 bytes long with (compressedLength * 2 +
isOriginal) stored as a little endian value. For example, the header
for a chunk that compressed to 100,000 bytes would be [0x40, 0x0d,
0x03]. The header for 5 bytes that did not compress would be [0x0b,
0x00, 0x00]. Each compression chunk is compressed independently so
that as long as a decompressor starts at the top of a header, it can
start decompressing without the previous bytes.</p>
<p><img src="/img/CompressionStream.png" alt="compression streams" /></p>
<p>The default compression chunk size is 256K, but writers can choose
their own value. Larger chunks lead to better compression, but require
more memory. The chunk size is recorded in the Postscript so that
readers can allocate appropriately sized buffers. Readers are
guaranteed that no chunk will expand to more than the compression chunk
size.</p>
<p>ORC files without generic compression write each stream directly
with no headers.</p>
<h1 id="run-length-encoding">Run Length Encoding</h1>
<h2 id="base-128-varint">Base 128 Varint</h2>
<p>Variable width integer encodings take advantage of the fact that most
numbers are small and that having smaller encodings for small numbers
shrinks the overall size of the data. ORC uses the varint format from
Protocol Buffers, which writes data in little endian format using the
low 7 bits of each byte. The high bit in each byte is set if the
number continues into the next byte.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Unsigned Original</th>
<th style="text-align: left">Serialized</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">0</td>
<td style="text-align: left">0x00</td>
</tr>
<tr>
<td style="text-align: left">1</td>
<td style="text-align: left">0x01</td>
</tr>
<tr>
<td style="text-align: left">127</td>
<td style="text-align: left">0x7f</td>
</tr>
<tr>
<td style="text-align: left">128</td>
<td style="text-align: left">0x80, 0x01</td>
</tr>
<tr>
<td style="text-align: left">129</td>
<td style="text-align: left">0x81, 0x01</td>
</tr>
<tr>
<td style="text-align: left">16,383</td>
<td style="text-align: left">0xff, 0x7f</td>
</tr>
<tr>
<td style="text-align: left">16,384</td>
<td style="text-align: left">0x80, 0x80, 0x01</td>
</tr>
<tr>
<td style="text-align: left">16,385</td>
<td style="text-align: left">0x81, 0x80, 0x01</td>
</tr>
</tbody>
</table>
<p>For signed integer types, the number is converted into an unsigned
number using a zigzag encoding. Zigzag encoding moves the sign bit to
the least significant bit using the expression (val « 1) ^ (val »
63) and derives its name from the fact that positive and negative
numbers alternate once encoded. The unsigned number is then serialized
as above.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Signed Original</th>
<th style="text-align: left">Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">0</td>
<td style="text-align: left">0</td>
</tr>
<tr>
<td style="text-align: left">-1</td>
<td style="text-align: left">1</td>
</tr>
<tr>
<td style="text-align: left">1</td>
<td style="text-align: left">2</td>
</tr>
<tr>
<td style="text-align: left">-2</td>
<td style="text-align: left">3</td>
</tr>
<tr>
<td style="text-align: left">2</td>
<td style="text-align: left">4</td>
</tr>
</tbody>
</table>
<h2 id="byte-run-length-encoding">Byte Run Length Encoding</h2>
<p>For byte streams, ORC uses a very light weight encoding of identical
values.</p>
<ul>
<li>Run - a sequence of at least 3 identical values</li>
<li>Literals - a sequence of non-identical values</li>
</ul>
<p>The first byte of each group of values is a header that determines
whether it is a run (value between 0 to 127) or literal list (value
between -128 to -1). For runs, the control byte is the length of the
run minus the length of the minimal run (3) and the control byte for
literal lists is the negative length of the list. For example, a
hundred 0’s is encoded as [0x61, 0x00] and the sequence 0x44, 0x45
would be encoded as [0xfe, 0x44, 0x45]. The next group can choose
either of the encodings.</p>
<h2 id="boolean-run-length-encoding">Boolean Run Length Encoding</h2>
<p>For encoding boolean types, the bits are put in the bytes from most
significant to least significant. The bytes are encoded using byte run
length encoding as described in the previous section. For example,
the byte sequence [0xff, 0x80] would be one true followed by
seven false values.</p>
<h2 id="integer-run-length-encoding-version-1">Integer Run Length Encoding, version 1</h2>
<p>ORC v0 files use Run Length Encoding version 1 (RLEv1),
which provides a lightweight compression of signed or unsigned integer
sequences. RLEv1 has two sub-encodings:</p>
<ul>
<li>Run - a sequence of values that differ by a small fixed delta</li>
<li>Literals - a sequence of varint encoded values</li>
</ul>
<p>Runs start with an initial byte of 0x00 to 0x7f, which encodes the
length of the run - 3. A second byte provides the fixed delta in the
range of -128 to 127. Finally, the first value of the run is encoded
as a base 128 varint.</p>
<p>For example, if the sequence is 100 instances of 7 the encoding would
start with 100 - 3, followed by a delta of 0, and a varint of 7 for
an encoding of [0x61, 0x00, 0x07]. To encode the sequence of numbers
running from 100 to 1, the first byte is 100 - 3, the delta is -1,
and the varint is 100 for an encoding of [0x61, 0xff, 0x64].</p>
<p>Literals start with an initial byte of 0x80 to 0xff, which corresponds
to the negative of number of literals in the sequence. Following the
header byte, the list of N varints is encoded. Thus, if there are
no runs, the overhead is 1 byte for each 128 integers. Numbers
[2, 3, 6, 7, 11] would be encoded as [0xfb, 0x02, 0x03, 0x06, 0x07, 0xb].</p>
<h1 id="stripes">Stripes</h1>
<p>The body of ORC files consists of a series of stripes. Stripes are
large (typically ~200MB) and independent of each other and are often
processed by different tasks. The defining characteristic for columnar
storage formats is that the data for each column is stored separately
and that reading data out of the file should be proportional to the
number of columns read.</p>
<p>In ORC files, each column is stored in several streams that are stored
next to each other in the file. For example, an integer column is
represented as two streams PRESENT, which uses one with a bit per
value recording if the value is non-null, and DATA, which records the
non-null values. If all of a column’s values in a stripe are non-null,
the PRESENT stream is omitted from the stripe. For binary data, ORC
uses three streams PRESENT, DATA, and LENGTH, which stores the length
of each value. The details of each type will be presented in the
following subsections.</p>
<p>There is a general order for index and data streams:</p>
<ul>
<li>Index streams are always placed together in the beginning of the stripe.</li>
<li>Data streams are placed together after index streams (if any).</li>
<li>Inside index streams or data streams, the unencrypted streams should be
placed first and then followed by streams grouped by each encryption variant.</li>
</ul>
<p>There is no fixed order within each unencrypted or encryption variant in the
index and data streams:</p>
<ul>
<li>Different stream kinds of the same column can be placed in any order.</li>
<li>Streams from different columns can even be placed in any order.
To get the precise information (a.k.a stream kind, column id and location) of
a stream within a stripe, the streams field in the StripeFooter described below
is the single source of truth.</li>
</ul>
<p>In the example of the integer column mentioned above, the order of the
PRESENT stream and the DATA stream cannot be determined in advance.
We need to get the precise information by <strong>StripeFooter</strong>.</p>
<h2 id="stripe-footer">Stripe Footer</h2>
<p>The stripe footer contains the encoding of each column and the
directory of the streams including their location.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message StripeFooter {
// the location of each stream
repeated Stream streams = 1;
// the encoding of each column
repeated ColumnEncoding columns = 2;
}
</code></pre></div></div>
<p>To describe each stream, ORC stores the kind of stream, the column id,
and the stream’s size in bytes. The details of what is stored in each stream
depends on the type and encoding of the column.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message Stream {
enum Kind {
// boolean stream of whether the next value is non-null
PRESENT = 0;
// the primary data stream
DATA = 1;
// the length of each value for variable length data
LENGTH = 2;
// the dictionary blob
DICTIONARY_DATA = 3;
// deprecated prior to Hive 0.11
// It was used to store the number of instances of each value in the
// dictionary
DICTIONARY_COUNT = 4;
// a secondary data stream
SECONDARY = 5;
// the index for seeking to particular row groups
ROW_INDEX = 6;
}
required Kind kind = 1;
// the column id
optional uint32 column = 2;
// the number of bytes in the file
optional uint64 length = 3;
}
</code></pre></div></div>
<p>Depending on their type several options for encoding are possible. The
encodings are divided into direct or dictionary-based categories and
further refined as to whether they use RLE v1 or v2.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message ColumnEncoding {
enum Kind {
// the encoding is mapped directly to the stream using RLE v1
DIRECT = 0;
// the encoding uses a dictionary of unique values using RLE v1
DICTIONARY = 1;
// the encoding is direct using RLE v2
}
required Kind kind = 1;
// for dictionary encodings, record the size of the dictionary
optional uint32 dictionarySize = 2;
}
</code></pre></div></div>
<h1 id="column-encodings"><a id="column-encoding-section">Column Encodings</a></h1>
<h2 id="smallint-int-and-bigint-columns">SmallInt, Int, and BigInt Columns</h2>
<p>All of the 16, 32, and 64 bit integer column types use the same set of
potential encodings, which is basically whether they use RLE v1 or
v2. If the PRESENT stream is not included, all of the values are
present. For values that have false bits in the present stream, no
values are included in the data stream.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Signed Integer RLE v1</td>
</tr>
</tbody>
</table>
<blockquote>
<p>Note that the order of the Stream is not fixed. It also applies to other Column types.</p>
</blockquote>
<h2 id="float-and-double-columns">Float and Double Columns</h2>
<p>Floating point types are stored using IEEE 754 floating point bit
layout. Float columns use 4 bytes per value and double columns use 8
bytes.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">IEEE 754 floating point representation</td>
</tr>
</tbody>
</table>
<h2 id="string-char-and-varchar-columns">String, Char, and VarChar Columns</h2>
<p>String, char, and varchar columns may be encoded either using a
dictionary encoding or a direct encoding. A direct encoding should be
preferred when there are many distinct values. In all of the
encodings, the PRESENT stream encodes whether the value is null. The
Java ORC writer automatically picks the encoding after the first row
group (10,000 rows).</p>
<p>For direct encoding the UTF-8 bytes are saved in the DATA stream and
the length of each value is written into the LENGTH stream. In direct
encoding, if the values were [“Nevada”, “California”]; the DATA
would be “NevadaCalifornia” and the LENGTH would be [6, 10].</p>
<p>For dictionary encodings the dictionary is sorted (in lexicographical
order of bytes in the UTF-8 encodings) and UTF-8 bytes of
each unique value are placed into DICTIONARY_DATA. The length of each
item in the dictionary is put into the LENGTH stream. The DATA stream
consists of the sequence of references to the dictionary elements.</p>
<p>In dictionary encoding, if the values were [“Nevada”,
“California”, “Nevada”, “California”, and “Florida”]; the
DICTIONARY_DATA would be “CaliforniaFloridaNevada” and LENGTH would
be [10, 7, 6]. The DATA would be [2, 0, 2, 0, 1].</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">String contents</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">LENGTH</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unsigned Integer RLE v1</td>
</tr>
<tr>
<td style="text-align: left">DICTIONARY</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unsigned Integer RLE v1</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DICTIONARY_DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">String contents</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">LENGTH</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unsigned Integer RLE v1</td>
</tr>
</tbody>
</table>
<h2 id="boolean-columns">Boolean Columns</h2>
<p>Boolean columns are rare, but have a simple encoding.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
</tbody>
</table>
<h2 id="tinyint-columns">TinyInt Columns</h2>
<p>TinyInt (byte) columns use byte run length encoding.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Byte RLE</td>
</tr>
</tbody>
</table>
<h2 id="binary-columns">Binary Columns</h2>
<p>Binary data is encoded with a PRESENT stream, a DATA stream that records
the contents, and a LENGTH stream that records the number of bytes per a
value.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">String contents</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">LENGTH</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unsigned Integer RLE v1</td>
</tr>
</tbody>
</table>
<h2 id="decimal-columns">Decimal Columns</h2>
<p>Decimal was introduced in Hive 0.11 with infinite precision (the total
number of digits). In Hive 0.13, the definition was change to limit
the precision to a maximum of 38 digits, which conveniently uses 127
bits plus a sign bit. The current encoding of decimal columns stores
the integer representation of the value as an unbounded length zigzag
encoded base 128 varint. The scale is stored in the SECONDARY stream
as a signed integer.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unbounded base 128 varints</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">SECONDARY</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Signed Integer RLE v1</td>
</tr>
</tbody>
</table>
<h2 id="date-columns">Date Columns</h2>
<p>Date data is encoded with a PRESENT stream, a DATA stream that records
the number of days after January 1, 1970 in UTC.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Signed Integer RLE v1</td>
</tr>
</tbody>
</table>
<h2 id="timestamp-columns">Timestamp Columns</h2>
<p>Timestamp records times down to nanoseconds as a PRESENT stream that
records non-null values, a DATA stream that records the number of
seconds after 1 January 2015, and a SECONDARY stream that records the
number of nanoseconds.</p>
<p>Because the number of nanoseconds often has a large number of trailing
zeros, the number has trailing decimal zero digits removed and the
last three bits are used to record how many zeros were removed. if the
trailing zeros are more than 2. Thus 1000 nanoseconds would be
serialized as 0x0a and 100000 would be serialized as 0x0c.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Signed Integer RLE v1</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">SECONDARY</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unsigned Integer RLE v1</td>
</tr>
</tbody>
</table>
<h2 id="struct-columns">Struct Columns</h2>
<p>Structs have no data themselves and delegate everything to their child
columns except for their PRESENT stream. They have a child column
for each of the fields.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
</tbody>
</table>
<h2 id="list-columns">List Columns</h2>
<p>Lists are encoded as the PRESENT stream and a length stream with
number of items in each list. They have a single child column for the
element values.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">LENGTH</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unsigned Integer RLE v1</td>
</tr>
</tbody>
</table>
<h2 id="map-columns">Map Columns</h2>
<p>Maps are encoded as the PRESENT stream and a length stream with number
of items in each map. They have a child column for the key and
another child column for the value.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">LENGTH</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Unsigned Integer RLE v1</td>
</tr>
</tbody>
</table>
<h2 id="union-columns">Union Columns</h2>
<p>Unions are encoded as the PRESENT stream and a tag stream that controls which
potential variant is used. They have a child column for each variant of the
union. Currently ORC union types are limited to 256 variants, which matches
the Hive type model.</p>
<table>
<thead>
<tr>
<th style="text-align: left">Encoding</th>
<th style="text-align: left">Stream Kind</th>
<th style="text-align: left">Optional</th>
<th style="text-align: left">Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">DIRECT</td>
<td style="text-align: left">PRESENT</td>
<td style="text-align: left">Yes</td>
<td style="text-align: left">Boolean RLE</td>
</tr>
<tr>
<td style="text-align: left"> </td>
<td style="text-align: left">DATA</td>
<td style="text-align: left">No</td>
<td style="text-align: left">Byte RLE</td>
</tr>
</tbody>
</table>
<h1 id="indexes">Indexes</h1>
<h2 id="row-group-index">Row Group Index</h2>
<p>The row group indexes consist of a ROW_INDEX stream for each primitive
column that has an entry for each row group. Row groups are controlled
by the writer and default to 10,000 rows. Each RowIndexEntry gives the
position of each stream for the column and the statistics for that row
group.</p>
<p>The index streams are placed at the front of the stripe, because in
the default case of streaming they do not need to be read. They are
only loaded when either predicate push down is being used or the
reader seeks to a particular row.</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message RowIndexEntry {
repeated uint64 positions = 1 [packed=true];
optional ColumnStatistics statistics = 2;
}
</code></pre></div></div>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>message RowIndex {
repeated RowIndexEntry entry = 1;
}
</code></pre></div></div>
<p>To record positions, each stream needs a sequence of numbers. For
uncompressed streams, the position is the byte offset of the RLE run’s
start location followed by the number of values that need to be
consumed from the run. In compressed streams, the first number is the
start of the compression chunk in the stream, followed by the number
of decompressed bytes that need to be consumed, and finally the number
of values consumed in the RLE.</p>
<p>For columns with multiple streams, the sequences of positions in each
stream are concatenated. That was an unfortunate decision on my part
that we should fix at some point, because it makes code that uses the
indexes error-prone.</p>
<p>Because dictionaries are accessed randomly, there is not a position to
record for the dictionary and the entire dictionary must be read even
if only part of a stripe is being read.</p>
<p>Note that for columns with multiple streams, the order of stream
positions in the RowIndex is <strong>fixed</strong>, which may be different to
the actual data stream placement, and it is the same as
<a href="#column-encoding-section">Column Encodings</a> section we described above.</p>
</article>
</div>
<div class="clear"></div>
</div>
</section>
<footer role="contentinfo">
<p style="margin-left: 20px; margin-right; 20px; text-align: center">The contents of this website are &copy;&nbsp;2024
<a href="https://www.apache.org/">Apache Software Foundation</a>
under the terms of the <a
href="https://www.apache.org/licenses/LICENSE-2.0.html">
Apache&nbsp;License&nbsp;v2</a>. Apache ORC and its logo are trademarks
of the Apache Software Foundation.</p>
</footer>
<script>
var anchorForId = function (id) {
var anchor = document.createElement("a");
anchor.className = "header-link";
anchor.href = "#" + id;
anchor.innerHTML = "<span class=\"sr-only\">Permalink</span><i class=\"fa fa-link\"></i>";
anchor.title = "Permalink";
return anchor;
};
var linkifyAnchors = function (level, containingElement) {
var headers = containingElement.getElementsByTagName("h" + level);
for (var h = 0; h < headers.length; h++) {
var header = headers[h];
if (typeof header.id !== "undefined" && header.id !== "") {
header.appendChild(anchorForId(header.id));
}
}
};
document.onreadystatechange = function () {
if (this.readyState === "complete") {
var contentBlock = document.getElementsByClassName("docs")[0] || document.getElementsByClassName("news")[0];
if (!contentBlock) {
return;
}
for (var level = 1; level <= 6; level++) {
linkifyAnchors(level, contentBlock);
}
}
};
</script>
</body>
</html>