blob: 5deb06b112feecb8509d2b6d0e784e76dd965e84 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <malloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include <typelib/typedescription.hxx>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/cppinterfaceproxy.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/vtablefactory.hxx"
#include "abi.hxx"
#include "mscx.hxx"
using namespace ::rtl;
using namespace ::com::sun::star::uno;
namespace
{
//==================================================================================================
// Perform the UNO call
//
// We must convert the parameters stored in pCallStack to UNO
// arguments and call pThis->getUnoI()->pDispatcher.
//
// pCallStack: ret addr, this, [ret *], [params]
//
// [ret *] is present when we are returning a structure bigger than 8 bytes
// Simple types are returned in rax, or xmm0 (fp).
// Similarly structures <= 8 bytes are in rax, xmm0 as necessary.
static inline typelib_TypeClass cpp2uno_call(
bridges::cpp_uno::shared::CppInterfaceProxy * pThis,
const typelib_TypeDescription * pMemberTypeDescr,
typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return
sal_Int32 nParams, typelib_MethodParameter * pParams,
void ** pCallStack,
sal_uInt64 * pRegisterReturn /* space for register return */ )
{
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
if (pReturnTypeRef)
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
void * pUnoReturn = 0;
void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need
if ( pReturnTypeDescr )
{
if ( x86_64::return_in_hidden_param( pReturnTypeRef ) )
{
// complex return via ptr (pCppReturn)
pCppReturn = pCallStack[2];
++pCallStack;
pUnoReturn = ( bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pCppReturn ); // direct way
}
else
pUnoReturn = pRegisterReturn; // direct way for simple types
}
// skip to first argument
pCallStack += 2;
// stack space
// parameters
void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams );
void ** pCppArgs = pUnoArgs + nParams;
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pUnoArgs + (2 * nParams));
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if ( !rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) // value
{
pCppArgs[nPos] = pUnoArgs[nPos] = pCallStack++;
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value || ref
{
void *pCppStack;
pCppArgs[nPos] = pCppStack = *pCallStack++;
if (! rParam.bIn) // is pure out
{
// uno out is unconstructed mem!
pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize );
pTempIndizes[nTempIndizes] = nPos;
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else if ( bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ) ) // is in/inout
{
uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pCppStack, pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
pUnoArgs[nPos] = pCppStack;
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
}
// ExceptionHolder
uno_Any aUnoExc; // Any will be constructed by callee
uno_Any * pUnoExc = &aUnoExc;
// invoke uno dispatch call
(*pThis->getUnoI()->pDispatcher)( pThis->getUnoI(), pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc );
// in case an exception occurred...
if ( pUnoExc )
{
// destruct temporary in/inout params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
if (pParams[nIndex].bIn) // is in/inout => was constructed
uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], 0 );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
CPPU_CURRENT_NAMESPACE::mscx_raiseException( &aUnoExc, pThis->getBridge()->getUno2Cpp() ); // has to destruct the any
// is here for dummy
return typelib_TypeClass_VOID;
}
else // else no exception occurred...
{
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if ( pParams[nIndex].bOut ) // inout/out
{
// convert and assign
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
}
// destroy temp uno param
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return
if ( pCppReturn ) // has complex return
{
if ( pUnoReturn != pCppReturn ) // needs reconversion
{
uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr,
pThis->getBridge()->getUno2Cpp() );
// destroy temp uno return
uno_destructData( pUnoReturn, pReturnTypeDescr, 0 );
}
// complex return ptr is set to rax
*(void **)pRegisterReturn = pCppReturn;
}
if ( pReturnTypeDescr )
{
typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass;
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
return eRet;
}
else
return typelib_TypeClass_VOID;
}
}
//==================================================================================================
extern "C" typelib_TypeClass cpp_vtable_call(
void ** pCallStack, sal_Int32 nFunctionIndex, sal_Int32 nVtableOffset,
sal_uInt64 * pRegisterReturn /* space for register return */ )
{
// pCallStack: ret adr, this, [ret *], params
void * pThis = static_cast< char * >(pCallStack[1]) - nVtableOffset;
bridges::cpp_uno::shared::CppInterfaceProxy * pCppI =
bridges::cpp_uno::shared::CppInterfaceProxy::castInterfaceToProxy( pThis );
typelib_InterfaceTypeDescription * pTypeDescr = pCppI->getTypeDescr();
OSL_ENSURE( nFunctionIndex < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" );
if ( nFunctionIndex >= pTypeDescr->nMapFunctionIndexToMemberIndex )
{
throw RuntimeException( OUString::createFromAscii("illegal vtable index!"),
reinterpret_cast<XInterface *>( pCppI ) );
}
// determine called method
sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nFunctionIndex];
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### illegal member index!" );
TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] );
typelib_TypeClass eRet;
switch ( aMemberDescr.get()->eTypeClass )
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
typelib_TypeDescriptionReference *pAttrTypeRef =
reinterpret_cast<typelib_InterfaceAttributeTypeDescription *>( aMemberDescr.get() )->pAttributeTypeRef;
if ( pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nFunctionIndex )
{
// is GET method
eRet = cpp2uno_call( pCppI, aMemberDescr.get(), pAttrTypeRef,
0, 0, // no params
pCallStack, pRegisterReturn );
}
else
{
// is SET method
typelib_MethodParameter aParam;
aParam.pTypeRef = pAttrTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
eRet = cpp2uno_call( pCppI, aMemberDescr.get(),
0, // indicates void return
1, &aParam,
pCallStack, pRegisterReturn );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// is METHOD
switch ( nFunctionIndex )
{
// standard XInterface vtable calls
case 1: // acquire()
pCppI->acquireProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 2: // release()
pCppI->releaseProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast<Type *>( pCallStack[3] )->getTypeLibType() );
if ( pTD )
{
XInterface * pInterface = 0;
(*pCppI->getBridge()->getCppEnv()->getRegisteredInterface)
( pCppI->getBridge()->getCppEnv(),
(void **)&pInterface,
pCppI->getOid().pData,
reinterpret_cast<typelib_InterfaceTypeDescription *>( pTD ) );
if ( pInterface )
{
::uno_any_construct( reinterpret_cast<uno_Any *>( pCallStack[1] ),
&pInterface, pTD, cpp_acquire );
pInterface->release();
TYPELIB_DANGER_RELEASE( pTD );
reinterpret_cast<void **>( pRegisterReturn )[0] = pCallStack[1];
eRet = typelib_TypeClass_ANY;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
{
typelib_InterfaceMethodTypeDescription *pMethodTD =
reinterpret_cast<typelib_InterfaceMethodTypeDescription *>( aMemberDescr.get() );
eRet = cpp2uno_call( pCppI, aMemberDescr.get(),
pMethodTD->pReturnTypeRef,
pMethodTD->nParams,
pMethodTD->pParams,
pCallStack, pRegisterReturn );
}
}
break;
}
default:
{
throw RuntimeException( OUString::createFromAscii("no member description found!"),
reinterpret_cast<XInterface *>( pCppI ) );
// is here for dummy
eRet = typelib_TypeClass_VOID;
}
}
return eRet;
}
//==================================================================================================
extern "C" void privateSnippetExecutor( ... );
int const codeSnippetSize = 44;
unsigned char * codeSnippet(
unsigned char * code, sal_Int32 functionIndex, sal_Int32 vtableOffset, bool isArgFloat[4])
{
unsigned char * p = code;
//
// | ... |
// +----------------------------+
// | argument 4 |
// rsp+40 +----------------------------+ -------
// | argument 3, r9/xmm3 home | ^ shadow
// rsp+32 +----------------------------+ | space,
// | argument 2, r8/xmm2 home | | guaranteed to be present but uninitialized,
// rsp+24 +----------------------------+ | we have to copy
// | argument 1, rdx/xmm1 home | | the first 4 parameters there from the registers,
// rsp+16 +----------------------------+ | to form the continuous array of arguments.
// | argument 0, rcx/xmm0 home | v
// rsp+08 +----------------------------+ -------
// | return address |
// rsp--> +----------------------------+
//
//
if (isArgFloat[0])
{
// movsd QWORD[rsp+8], XMM0
*p++ = 0xf2; *p++ = 0x0f; *p++ = 0x11; *p++ = 0x44; *p++ = 0x24; *p++ = 0x08;
}
else
{
// mov QWORD[rsp+8], rcx
*p++ = 0x48; *p++ = 0x49; *p++ = 0x4c; *p++ = 0x24; *p++ = 0x08;
}
if (isArgFloat[1])
{
// movsd QWORD[rsp+16], XMM1
*p++ = 0xf2; *p++ = 0x0f; *p++ = 0x11; *p++ = 0x4c; *p++ = 0x24; *p++ = 0x10;
}
else
{
// mov QWORD[rsp+16], rdx
*p++ = 0x48; *p++ = 0x49; *p++ = 0x54; *p++ = 0x24; *p++ = 0x10;
}
if (isArgFloat[2])
{
// movsd QWORD[rsp+24], XMM2
*p++ = 0xf2; *p++ = 0x0f; *p++ = 0x11; *p++ = 0x54; *p++ = 0x24; *p++ = 0x18;
}
else
{
// mov QWORD[rsp+24], r8
*p++ = 0x4c; *p++ = 0x89; *p++ = 0x44; *p++ = 0x24; *p++ = 0x18;
}
if (isArgFloat[3])
{
// movsd QWORD[rsp+32], XMM3
*p++ = 0xf2; *p++ = 0x0f; *p++ = 0x11; *p++ = 0x5c; *p++ = 0x24; *p++ = 0x20;
}
else
{
// mov QWORD[rsp+32], r9
*p++ = 0x4c; *p++ = 0x89; *p++ = 0x4c; *p++ = 0x24; *p++ = 0x20;
}
// mov rax, functionIndex
*p++ = 0xb8;
*p++ = functionIndex & 0xff;
*p++ = (functionIndex >> 8) & 0xff;
*p++ = (functionIndex >> 16) & 0xff;
*p++ = (functionIndex >> 24) & 0xff;
// mov r10, vtableOffset
*p++ = 0x41;
*p++ = 0xba;
*p++ = vtableOffset & 0xff;
*p++ = (vtableOffset >> 8) & 0xff;
*p++ = (vtableOffset >> 16) & 0xff;
*p++ = (vtableOffset >> 24) & 0xff;
// mov r11, privateSnippetExecutor
*p++ = 0x49;
*p++ = 0xbb;
*p++ = ((sal_uIntPtr)(&privateSnippetExecutor)) & 0xff;
*p++ = (((sal_uIntPtr)(&privateSnippetExecutor)) >> 8) & 0xff;
*p++ = (((sal_uIntPtr)(&privateSnippetExecutor)) >> 16) & 0xff;
*p++ = (((sal_uIntPtr)(&privateSnippetExecutor)) >> 24) & 0xff;
*p++ = (((sal_uIntPtr)(&privateSnippetExecutor)) >> 32) & 0xff;
*p++ = (((sal_uIntPtr)(&privateSnippetExecutor)) >> 40) & 0xff;
*p++ = (((sal_uIntPtr)(&privateSnippetExecutor)) >> 48) & 0xff;
*p++ = (((sal_uIntPtr)(&privateSnippetExecutor)) >> 56) & 0xff;
// jmp r11
*p++ = 0x49;
*p++ = 0xff;
*p++ = 0xe3;
OSL_ASSERT(p - code <= codeSnippetSize);
return code + codeSnippetSize;
}
}
struct bridges::cpp_uno::shared::VtableFactory::Slot { void * fn; };
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::mapBlockToVtable(void * block)
{
return static_cast< Slot * >(block) + 1;
}
sal_Size bridges::cpp_uno::shared::VtableFactory::getBlockSize(
sal_Int32 slotCount)
{
return (slotCount + 1) * sizeof (Slot) + slotCount * codeSnippetSize;
}
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::initializeBlock(
void * block, sal_Int32 slotCount)
{
struct RttiCompleteObjectLocator {
sal_uInt32 signature;
sal_uInt32 offset; // offset of vtable in objects of the class
sal_uInt32 cdOffset; // constructor displacement offset
// On AMD64, these 2 are offsets from the module's base address (when signature == 0):
sal_uInt32 typeDescriptorAddress;
sal_uInt32 classDescriptorAddress;
sal_uInt32 objectBase; // ignored when signature == 0
RttiCompleteObjectLocator(): signature(0), offset(0), cdOffset(0)
{
type_info *typeInfo = CPPU_CURRENT_NAMESPACE::mscx_getRTTI(
rtl::OUString(RTL_CONSTASCII_USTRINGPARAM(
"com.sun.star.uno.XInterface")));
HMODULE thisDLLBase;
GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, (LPCWSTR)&bridges::cpp_uno::shared::VtableFactory::initializeBlock, &thisDLLBase);
typeDescriptorAddress = (sal_uInt32) (((char*)typeInfo) - (char*)thisDLLBase);
classDescriptorAddress = 0;
objectBase = 0;
}
};
static RttiCompleteObjectLocator rtti;
Slot * slots = mapBlockToVtable(block);
slots[-1].fn = &rtti;
return slots + slotCount;
}
static void findFirst4Win64ArgumentTypes(
typelib_MethodParameter *pParams, sal_Int32 nParams,
typelib_TypeDescriptionReference *pReturnType, bool isArgFloat[4])
{
sal_uInt32 index = 0;
isArgFloat[0] = isArgFloat[1] = isArgFloat[2] = isArgFloat[3] = false;
// C++ "this" pointer:
++index;
// https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=vs-2017
// "Otherwise the caller assumes the responsibility of allocating memory
// and passing a pointer for the return value as the first argument.
// Subsequent arguments are then shifted one argument to the right.
// The same pointer must be returned by the callee in RAX."
if ( pReturnType && x86_64::return_in_hidden_param( pReturnType ) )
++index;
for (int param = 0; param < nParams; param++)
{
if (index >= 4)
break;
typelib_TypeDescription *pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, pParams[param].pTypeRef );
OSL_ASSERT( pParamTypeDescr );
isArgFloat[index++] = !pParams[param].bOut &&
(pParamTypeDescr->eTypeClass == typelib_TypeClass_FLOAT ||
pParamTypeDescr->eTypeClass == typelib_TypeClass_DOUBLE);
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
unsigned char * bridges::cpp_uno::shared::VtableFactory::addLocalFunctions(
Slot ** slots, unsigned char * code,
typelib_InterfaceTypeDescription const *type, sal_Int32 functionOffset,
sal_Int32 functionCount, sal_Int32 vtableOffset)
{
(*slots) -= functionCount;
Slot * s = *slots;
for (sal_Int32 nPos = 0; nPos < type->nMembers; ++nPos) {
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, type->ppMembers[ nPos ] );
OSL_ASSERT( pTD );
bool isArgFloat[4];
if ( typelib_TypeClass_INTERFACE_ATTRIBUTE == pTD->eTypeClass )
{
typelib_InterfaceAttributeTypeDescription *pAttrTD =
reinterpret_cast<typelib_InterfaceAttributeTypeDescription *>( pTD );
// get method
findFirst4Win64ArgumentTypes(0, 0, pAttrTD->pAttributeTypeRef, isArgFloat);
(s++)->fn = code;
code = codeSnippet(code, functionOffset++, vtableOffset, isArgFloat);
if ( ! pAttrTD->bReadOnly )
{
// set method
typelib_MethodParameter aParam;
aParam.pTypeRef = pAttrTD->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
findFirst4Win64ArgumentTypes(&aParam, 1, 0, isArgFloat);
(s++)->fn = code;
code = codeSnippet(code, functionOffset++, vtableOffset, isArgFloat);
}
}
else if ( typelib_TypeClass_INTERFACE_METHOD == pTD->eTypeClass )
{
typelib_InterfaceMethodTypeDescription *pMethodTD =
reinterpret_cast<typelib_InterfaceMethodTypeDescription *>( pTD );
findFirst4Win64ArgumentTypes(pMethodTD->pParams, pMethodTD->nParams,
pMethodTD->pReturnTypeRef, isArgFloat);
(s++)->fn = code;
code = codeSnippet(code, functionOffset++, vtableOffset, isArgFloat);
}
else
OSL_ASSERT( false );
TYPELIB_DANGER_RELEASE( pTD );
}
return code;
}
void bridges::cpp_uno::shared::VtableFactory::flushCode(
unsigned char const *, unsigned char const *)
{}