|  | /************************************************************** | 
|  | * | 
|  | * Licensed to the Apache Software Foundation (ASF) under one | 
|  | * or more contributor license agreements.  See the NOTICE file | 
|  | * distributed with this work for additional information | 
|  | * regarding copyright ownership.  The ASF licenses this file | 
|  | * to you under the Apache License, Version 2.0 (the | 
|  | * "License"); you may not use this file except in compliance | 
|  | * with the License.  You may obtain a copy of the License at | 
|  | * | 
|  | *   http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, | 
|  | * software distributed under the License is distributed on an | 
|  | * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | 
|  | * KIND, either express or implied.  See the License for the | 
|  | * specific language governing permissions and limitations | 
|  | * under the License. | 
|  | * | 
|  | *************************************************************/ | 
|  |  | 
|  |  | 
|  |  | 
|  | // Natural, Clamped, or Periodic Cubic Splines | 
|  | // | 
|  | // Input:  A list of N+1 points (x_i,a_i), 0 <= i <= N, which are sampled | 
|  | // from a function, a_i = f(x_i).  The function f is unknown.  Boundary | 
|  | // conditions are | 
|  | //   (1) Natural splines:  f"(x_0) = f"(x_N) = 0 | 
|  | //   (2) Clamped splines:  f'(x_0) and f'(x_N) are user-specified. | 
|  | //   (3) Periodic splines:  f(x_0) = f(x_N) [in which case a_N = a_0 is | 
|  | //       required in the input], f'(x_0) = f'(x_N), and f"(x_0) = f"(x_N). | 
|  | // | 
|  | // Output: b_i, c_i, d_i, 0 <= i <= N-1, which are coefficients for the cubic | 
|  | // spline S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 for | 
|  | // x_i <= x < x_{i+1}. | 
|  | // | 
|  | // The natural and clamped algorithms were implemented from | 
|  | // | 
|  | //    Numerical Analysis, 3rd edition | 
|  | //    Richard L. Burden and J. Douglas Faires | 
|  | //    Prindle, Weber & Schmidt | 
|  | //    Boston, 1985, pp. 122-124. | 
|  | // | 
|  | // The algorithm sets up a tridiagonal linear system of equations in the | 
|  | // c_i values.  This can be solved in O(N) time. | 
|  | // | 
|  | // The periodic spline algorithm was implemented from my own derivation.  The | 
|  | // linear system of equations is not tridiagonal.  For now I use a standard | 
|  | // linear solver that does not take advantage of the sparseness of the | 
|  | // matrix.  Therefore for very large N, you may have to worry about memory | 
|  | // usage. | 
|  |  | 
|  | #include "solver.h" | 
|  | //----------------------------------------------------------------------------- | 
|  | void NaturalSpline (int N, double* x, double* a, double*& b, double*& c, | 
|  | double*& d) | 
|  | { | 
|  | const double oneThird = 1.0/3.0; | 
|  |  | 
|  | int i; | 
|  | double* h = new double[N]; | 
|  | double* hdiff = new double[N]; | 
|  | double* alpha = new double[N]; | 
|  |  | 
|  | for (i = 0; i < N; i++){ | 
|  | h[i] = x[i+1]-x[i]; | 
|  | } | 
|  |  | 
|  | for (i = 1; i < N; i++) | 
|  | hdiff[i] = x[i+1]-x[i-1]; | 
|  |  | 
|  | for (i = 1; i < N; i++) | 
|  | { | 
|  | double numer = 3.0*(a[i+1]*h[i-1]-a[i]*hdiff[i]+a[i-1]*h[i]); | 
|  | double denom = h[i-1]*h[i]; | 
|  | alpha[i] = numer/denom; | 
|  | } | 
|  |  | 
|  | double* ell = new double[N+1]; | 
|  | double* mu = new double[N]; | 
|  | double* z = new double[N+1]; | 
|  | double recip; | 
|  |  | 
|  | ell[0] = 1.0; | 
|  | mu[0] = 0.0; | 
|  | z[0] = 0.0; | 
|  |  | 
|  | for (i = 1; i < N; i++) | 
|  | { | 
|  | ell[i] = 2.0*hdiff[i]-h[i-1]*mu[i-1]; | 
|  | recip = 1.0/ell[i]; | 
|  | mu[i] = recip*h[i]; | 
|  | z[i] = recip*(alpha[i]-h[i-1]*z[i-1]); | 
|  | } | 
|  | ell[N] = 1.0; | 
|  | z[N] = 0.0; | 
|  |  | 
|  | b = new double[N]; | 
|  | c = new double[N+1]; | 
|  | d = new double[N]; | 
|  |  | 
|  | c[N] = 0.0; | 
|  |  | 
|  | for (i = N-1; i >= 0; i--) | 
|  | { | 
|  | c[i] = z[i]-mu[i]*c[i+1]; | 
|  | recip = 1.0/h[i]; | 
|  | b[i] = recip*(a[i+1]-a[i])-h[i]*(c[i+1]+2.0*c[i])*oneThird; | 
|  | d[i] = oneThird*recip*(c[i+1]-c[i]); | 
|  | } | 
|  |  | 
|  | delete[] h; | 
|  | delete[] hdiff; | 
|  | delete[] alpha; | 
|  | delete[] ell; | 
|  | delete[] mu; | 
|  | delete[] z; | 
|  | } | 
|  |  | 
|  | void PeriodicSpline (int N, double* x, double* a, double*& b, double*& c, | 
|  | double*& d) | 
|  | { | 
|  | double* h = new double[N]; | 
|  | int i; | 
|  | for (i = 0; i < N; i++) | 
|  | h[i] = x[i+1]-x[i]; | 
|  |  | 
|  | mgcLinearSystemD sys; | 
|  | double** mat = sys.NewMatrix(N+1);  // guaranteed to be zeroed memory | 
|  | c = sys.NewVector(N+1);   // guaranteed to be zeroed memory | 
|  |  | 
|  | // c[0] - c[N] = 0 | 
|  | mat[0][0] = +1.0f; | 
|  | mat[0][N] = -1.0f; | 
|  |  | 
|  | // h[i-1]*c[i-1]+2*(h[i-1]+h[i])*c[i]+h[i]*c[i+1] = | 
|  | //   3*{(a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]} | 
|  | for (i = 1; i <= N-1; i++) | 
|  | { | 
|  | mat[i][i-1] = h[i-1]; | 
|  | mat[i][i  ] = 2.0f*(h[i-1]+h[i]); | 
|  | mat[i][i+1] = h[i]; | 
|  | c[i] = 3.0f*((a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]); | 
|  | } | 
|  |  | 
|  | // "wrap around equation" for periodicity | 
|  | // h[N-1]*c[N-1]+2*(h[N-1]+h[0])*c[0]+h[0]*c[1] = | 
|  | //   3*{(a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]} | 
|  | mat[N][N-1] = h[N-1]; | 
|  | mat[N][0  ] = 2.0f*(h[N-1]+h[0]); | 
|  | mat[N][1  ] = h[0]; | 
|  | c[N] = 3.0f*((a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]); | 
|  |  | 
|  | // solve for c[0] through c[N] | 
|  | sys.Solve(N+1,mat,c); | 
|  |  | 
|  | const double oneThird = 1.0/3.0; | 
|  | b = new double[N]; | 
|  | d = new double[N]; | 
|  | for (i = 0; i < N; i++) | 
|  | { | 
|  | b[i] = (a[i+1]-a[i])/h[i] - oneThird*(c[i+1]+2.0f*c[i])*h[i]; | 
|  | d[i] = oneThird*(c[i+1]-c[i])/h[i]; | 
|  | } | 
|  |  | 
|  | delete[] h; | 
|  | sys.DeleteMatrix(N+1,mat); | 
|  | } |