| /* |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. |
| * The ASF licenses this file to You under the Apache License, Version 2.0 |
| * (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package opennlp.tools.ml.maxent; |
| |
| import java.io.IOException; |
| import java.util.HashMap; |
| |
| import org.junit.jupiter.api.Assertions; |
| import org.junit.jupiter.api.BeforeEach; |
| import org.junit.jupiter.api.Test; |
| |
| import opennlp.tools.ml.AbstractTrainer; |
| import opennlp.tools.ml.model.DataIndexer; |
| import opennlp.tools.ml.model.FileEventStream; |
| import opennlp.tools.ml.model.OnePassRealValueDataIndexer; |
| import opennlp.tools.ml.model.RealValueFileEventStream; |
| import opennlp.tools.util.TrainingParameters; |
| |
| |
| public class RealValueModelTest { |
| |
| private DataIndexer testDataIndexer; |
| |
| @BeforeEach |
| void initIndexer() { |
| TrainingParameters trainingParameters = new TrainingParameters(); |
| trainingParameters.put(AbstractTrainer.CUTOFF_PARAM, 1); |
| testDataIndexer = new OnePassRealValueDataIndexer(); |
| testDataIndexer.init(trainingParameters, new HashMap<>()); |
| } |
| |
| @Test |
| void testRealValuedWeightsVsRepeatWeighting() throws IOException { |
| GISModel realModel; |
| GISTrainer gisTrainer = new GISTrainer(); |
| try (RealValueFileEventStream rvfes1 = new RealValueFileEventStream( |
| "src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt")) { |
| testDataIndexer.index(rvfes1); |
| realModel = gisTrainer.trainModel(100, testDataIndexer); |
| } |
| |
| GISModel repeatModel; |
| try (FileEventStream rvfes2 = new FileEventStream( |
| "src/test/resources/data/opennlp/maxent/repeat-weighting-training-data.txt")) { |
| testDataIndexer.index(rvfes2); |
| repeatModel = gisTrainer.trainModel(100, testDataIndexer); |
| } |
| |
| String[] features2Classify = new String[] {"feature2", "feature5"}; |
| double[] realResults = realModel.eval(features2Classify); |
| double[] repeatResults = repeatModel.eval(features2Classify); |
| |
| Assertions.assertEquals(realResults.length, repeatResults.length); |
| for (int i = 0; i < realResults.length; i++) { |
| Assertions.assertEquals(repeatResults[i], realResults[i], 0.01f); |
| } |
| |
| features2Classify = new String[] {"feature1", "feature2", "feature3", "feature4", "feature5"}; |
| realResults = realModel.eval(features2Classify, new float[] {5.5f, 6.1f, 9.1f, 4.0f, 1.8f}); |
| repeatResults = repeatModel.eval(features2Classify, new float[] {5.5f, 6.1f, 9.1f, 4.0f, 1.8f}); |
| |
| Assertions.assertEquals(realResults.length, repeatResults.length); |
| for (int i = 0; i < realResults.length; i++) { |
| Assertions.assertEquals(repeatResults[i], realResults[i],0.01f); |
| } |
| |
| } |
| } |