blob: 28b98f5a4bcaa14618f84917c9d9a1bde1e937a5 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.ml.maxent;
import java.io.IOException;
import java.util.HashMap;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import opennlp.tools.ml.AbstractTrainer;
import opennlp.tools.ml.model.DataIndexer;
import opennlp.tools.ml.model.FileEventStream;
import opennlp.tools.ml.model.OnePassRealValueDataIndexer;
import opennlp.tools.ml.model.RealValueFileEventStream;
import opennlp.tools.util.TrainingParameters;
public class RealValueModelTest {
private DataIndexer testDataIndexer;
@BeforeEach
void initIndexer() {
TrainingParameters trainingParameters = new TrainingParameters();
trainingParameters.put(AbstractTrainer.CUTOFF_PARAM, 1);
testDataIndexer = new OnePassRealValueDataIndexer();
testDataIndexer.init(trainingParameters, new HashMap<>());
}
@Test
void testRealValuedWeightsVsRepeatWeighting() throws IOException {
GISModel realModel;
GISTrainer gisTrainer = new GISTrainer();
try (RealValueFileEventStream rvfes1 = new RealValueFileEventStream(
"src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt")) {
testDataIndexer.index(rvfes1);
realModel = gisTrainer.trainModel(100, testDataIndexer);
}
GISModel repeatModel;
try (FileEventStream rvfes2 = new FileEventStream(
"src/test/resources/data/opennlp/maxent/repeat-weighting-training-data.txt")) {
testDataIndexer.index(rvfes2);
repeatModel = gisTrainer.trainModel(100, testDataIndexer);
}
String[] features2Classify = new String[] {"feature2", "feature5"};
double[] realResults = realModel.eval(features2Classify);
double[] repeatResults = repeatModel.eval(features2Classify);
Assertions.assertEquals(realResults.length, repeatResults.length);
for (int i = 0; i < realResults.length; i++) {
Assertions.assertEquals(repeatResults[i], realResults[i], 0.01f);
}
features2Classify = new String[] {"feature1", "feature2", "feature3", "feature4", "feature5"};
realResults = realModel.eval(features2Classify, new float[] {5.5f, 6.1f, 9.1f, 4.0f, 1.8f});
repeatResults = repeatModel.eval(features2Classify, new float[] {5.5f, 6.1f, 9.1f, 4.0f, 1.8f});
Assertions.assertEquals(realResults.length, repeatResults.length);
for (int i = 0; i < realResults.length; i++) {
Assertions.assertEquals(repeatResults[i], realResults[i],0.01f);
}
}
}