| /**************************************************************************** |
| * drivers/mtd/sst25xx.c |
| * |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. The |
| * ASF licenses this file to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance with the |
| * License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| * License for the specific language governing permissions and limitations |
| * under the License. |
| * |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Included Files |
| ****************************************************************************/ |
| |
| #include <nuttx/config.h> |
| |
| #include <sys/types.h> |
| #include <inttypes.h> |
| #include <stdint.h> |
| #include <stdbool.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <debug.h> |
| |
| #include <nuttx/kmalloc.h> |
| #include <nuttx/signal.h> |
| #include <nuttx/fs/ioctl.h> |
| #include <nuttx/spi/spi.h> |
| #include <nuttx/mtd/mtd.h> |
| |
| /**************************************************************************** |
| * Pre-processor Definitions |
| ****************************************************************************/ |
| |
| /* Configuration ************************************************************/ |
| |
| /* Per the data sheet, SST25 parts can be driven with either SPI mode 0 |
| * (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to |
| * specify CONFIG_SST25XX_SPIMODE to select the best mode for your device. |
| * If CONFIG_SST25XX_SPIMODE is not defined, mode 0 will be used. |
| */ |
| |
| #ifndef CONFIG_SST25XX_SPIMODE |
| # define CONFIG_SST25XX_SPIMODE SPIDEV_MODE0 |
| #endif |
| |
| /* SPI Frequency. May be up to 25MHz. */ |
| |
| #ifndef CONFIG_SST25XX_SPIFREQUENCY |
| # define CONFIG_SST25XX_SPIFREQUENCY 20000000 |
| #endif |
| |
| /* Various manufacturers may have produced the parts. 0xBF is the |
| * manufacturer ID for the SST serial FLASH. |
| */ |
| |
| #ifndef CONFIG_SST25XX_MANUFACTURER |
| # define CONFIG_SST25XX_MANUFACTURER 0xBF |
| #endif |
| |
| #ifndef CONFIG_SST25XX_MEMORY_TYPE |
| # define CONFIG_SST25XX_MEMORY_TYPE 0x25 |
| #endif |
| |
| /* SST25 Registers **********************************************************/ |
| |
| /* Identification register values */ |
| |
| #define SST25_MANUFACTURER CONFIG_SST25XX_MANUFACTURER |
| #define SST25_MEMORY_TYPE CONFIG_SST25XX_MEMORY_TYPE |
| |
| #define SST25_SST25064_CAPACITY 0x4b /* 64 M-bit */ |
| |
| /* SST25064 capacity is 8,388,608 bytes: |
| * (2,0548 sectors) * (4,096 bytes per sector) |
| * (32,768 pages) * (256 bytes per page) |
| */ |
| |
| #define SST25_SST25064_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */ |
| #define SST25_SST25064_NSECTORS 2048 |
| #define SST25_SST25064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ |
| #define SST25_SST25064_NPAGES 32768 |
| |
| /* Instructions */ |
| |
| /* Command Value N Description Addr Dummy Data |
| */ |
| |
| #define SST25_WREN 0x06 /* 1 Write Enable 0 0 0 */ |
| #define SST25_WRDI 0x04 /* 1 Write Disable 0 0 0 */ |
| #define SST25_RDID 0x9f /* 1 Read Identification 0 0 1-3 */ |
| #define SST25_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */ |
| #define SST25_EWSR 0x50 /* 1 Write enable status 0 0 0 */ |
| #define SST25_WRSR 0x01 /* 1 Write Status Register 0 0 1 */ |
| #define SST25_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */ |
| #define SST25_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */ |
| #define SST25_PP 0x02 /* 1 Page Program 3 0 1-256 */ |
| #define SST25_SE 0x20 /* 1 Sector Erase 3 0 0 */ |
| #define SST25_BE32 0x52 /* 2 32K Block Erase 3 0 0 */ |
| #define SST25_BE64 0xD8 /* 2 64K Block Erase 3 0 0 */ |
| #define SST25_BE 0xc7 /* 1 Bulk Erase 0 0 0 */ |
| #define SST25_RES 0xab /* 1 Read Electronic Signature 0 3 >=1 */ |
| |
| /* NOTE 1: All parts. |
| * NOTE 2: In SST25064 terminology, 0x52 and 0xd8 are block erase and 0x20 |
| * is a sector erase. Block erase provides a faster way to erase |
| * multiple 4K sectors at once. |
| */ |
| |
| /* Status register bit definitions */ |
| |
| #define SST25_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */ |
| #define SST25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ |
| #define SST25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */ |
| #define SST25_SR_BP_MASK (15 << SST25_SR_BP_SHIFT) |
| # define SST25_SR_BP_NONE (0 << SST25_SR_BP_SHIFT) /* Unprotected */ |
| # define SST25_SR_BP_UPPER128th (1 << SST25_SR_BP_SHIFT) /* Upper 128th */ |
| # define SST25_SR_BP_UPPER64th (2 << SST25_SR_BP_SHIFT) /* Upper 64th */ |
| # define SST25_SR_BP_UPPER32nd (3 << SST25_SR_BP_SHIFT) /* Upper 32nd */ |
| # define SST25_SR_BP_UPPER16th (4 << SST25_SR_BP_SHIFT) /* Upper 16th */ |
| # define SST25_SR_BP_UPPER8th (5 << SST25_SR_BP_SHIFT) /* Upper 8th */ |
| # define SST25_SR_BP_UPPERQTR (6 << SST25_SR_BP_SHIFT) /* Upper quarter */ |
| # define SST25_SR_BP_UPPERHALF (7 << SST25_SR_BP_SHIFT) /* Upper half */ |
| # define SST25_SR_BP_ALL (8 << SST25_SR_BP_SHIFT) /* All sectors */ |
| #define SST_SR_SEC (1 << 6) /* Security ID status */ |
| #define SST25_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */ |
| |
| #define SST25_DUMMY 0xa5 |
| |
| /**************************************************************************** |
| * Private Types |
| ****************************************************************************/ |
| |
| /* This type represents the state of the MTD device. The struct mtd_dev_s |
| * must appear at the beginning of the definition so that you can freely |
| * cast between pointers to struct mtd_dev_s and struct sst25xx_dev_s. |
| */ |
| |
| struct sst25xx_dev_s |
| { |
| struct mtd_dev_s mtd; /* MTD interface */ |
| FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ |
| uint8_t sectorshift; /* 16 or 18 */ |
| uint8_t pageshift; /* 8 */ |
| uint16_t nsectors; /* 128 or 64 */ |
| uint32_t npages; /* 32,768 or 65,536 */ |
| uint8_t lastwaswrite; /* Indicates if last operation was write */ |
| }; |
| |
| /**************************************************************************** |
| * Private Function Prototypes |
| ****************************************************************************/ |
| |
| /* Helpers */ |
| |
| static void sst25xx_lock(FAR struct spi_dev_s *dev); |
| static inline void sst25xx_unlock(FAR struct spi_dev_s *dev); |
| static inline int sst25xx_readid(struct sst25xx_dev_s *priv); |
| static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv); |
| static void sst25xx_writeenable(struct sst25xx_dev_s *priv); |
| static inline void sst25xx_sectorerase(struct sst25xx_dev_s *priv, |
| off_t offset, uint8_t type); |
| static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv); |
| static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, |
| FAR const uint8_t *buffer, |
| off_t offset); |
| |
| /* MTD driver methods */ |
| |
| static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks); |
| static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks, FAR uint8_t *buf); |
| static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks, FAR const uint8_t *buf); |
| static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, |
| size_t nbytes, |
| FAR uint8_t *buffer); |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, |
| size_t nbytes, |
| FAR const uint8_t *buffer); |
| #endif |
| static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, |
| unsigned long arg); |
| |
| /**************************************************************************** |
| * Private Data |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Functions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Name: sst25xx_lock |
| ****************************************************************************/ |
| |
| static void sst25xx_lock(FAR struct spi_dev_s *dev) |
| { |
| /* On SPI buses where there are multiple devices, it will be necessary to |
| * lock SPI to have exclusive access to the buses for a sequence of |
| * transfers. The bus should be locked before the chip is selected. |
| * |
| * This is a blocking call and will not return until we have exclusive |
| * access to the SPI bus. We will retain that exclusive access until |
| * the bus is unlocked. |
| */ |
| |
| SPI_LOCK(dev, true); |
| |
| /* After locking the SPI bus, the we also need call the setfrequency, |
| * setbits, and setmode methods to make sure that the SPI is properly |
| * configured for the device. |
| * If the SPI bus is being shared, then it may have been left in an |
| * incompatible state. |
| */ |
| |
| SPI_SETMODE(dev, CONFIG_SST25XX_SPIMODE); |
| SPI_SETBITS(dev, 8); |
| SPI_HWFEATURES(dev, 0); |
| SPI_SETFREQUENCY(dev, CONFIG_SST25XX_SPIFREQUENCY); |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_unlock |
| ****************************************************************************/ |
| |
| static inline void sst25xx_unlock(FAR struct spi_dev_s *dev) |
| { |
| SPI_LOCK(dev, false); |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_readid |
| ****************************************************************************/ |
| |
| static inline int sst25xx_readid(struct sst25xx_dev_s *priv) |
| { |
| uint16_t manufacturer; |
| uint16_t memory; |
| uint16_t capacity; |
| |
| finfo("priv: %p\n", priv); |
| |
| /* Lock the SPI bus, configure the bus, and select this FLASH part. */ |
| |
| sst25xx_lock(priv->dev); |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send the "Read ID (RDID)" command and read the first three ID bytes */ |
| |
| SPI_SEND(priv->dev, SST25_RDID); |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| manufacturer = SPI_SEND(priv->dev, SST25_DUMMY); |
| memory = SPI_SEND(priv->dev, SST25_DUMMY); |
| capacity = SPI_SEND(priv->dev, SST25_DUMMY); |
| |
| /* Deselect the FLASH and unlock the bus */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| sst25xx_unlock(priv->dev); |
| |
| finfo("manufacturer: %02x memory: %02x capacity: %02x\n", |
| manufacturer, memory, capacity); |
| |
| /* Check for a valid manufacturer and memory type */ |
| |
| if (manufacturer == SST25_MANUFACTURER && memory == SST25_MEMORY_TYPE) |
| { |
| /* Okay.. is it a FLASH capacity that we understand? */ |
| |
| if (capacity == SST25_SST25064_CAPACITY) |
| { |
| /* Save the FLASH geometry */ |
| |
| priv->sectorshift = SST25_SST25064_SECTOR_SHIFT; |
| priv->nsectors = SST25_SST25064_NSECTORS; |
| priv->pageshift = SST25_SST25064_PAGE_SHIFT; |
| priv->npages = SST25_SST25064_NPAGES; |
| return OK; |
| } |
| } |
| |
| return -ENODEV; |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_waitwritecomplete |
| ****************************************************************************/ |
| |
| static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv) |
| { |
| uint8_t status; |
| |
| /* No need to check if no write / erase was done */ |
| |
| #if 0 |
| if (!priv->lastwaswrite) |
| { |
| return; |
| } |
| #endif |
| |
| /* Loop as long as the memory is busy with a write cycle */ |
| |
| do |
| { |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send "Read Status Register (RDSR)" command */ |
| |
| SPI_SEND(priv->dev, SST25_RDSR); |
| |
| /* Send a dummy byte to generate the clock needed to shift out the |
| * status |
| */ |
| |
| status = SPI_SEND(priv->dev, SST25_DUMMY); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| |
| /* Given that writing could take up to few tens of milliseconds, and |
| * erasing could take more. The following short delay in the "busy" |
| * case will allow other peripherals to access the SPI bus. |
| */ |
| |
| if ((status & SST25_SR_WIP) != 0) |
| { |
| sst25xx_unlock(priv->dev); |
| nxsig_usleep(1000); |
| sst25xx_lock(priv->dev); |
| } |
| } |
| while ((status & SST25_SR_WIP) != 0); |
| |
| priv->lastwaswrite = false; |
| |
| finfo("Complete\n"); |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_writeenable |
| ****************************************************************************/ |
| |
| static void sst25xx_writeenable(struct sst25xx_dev_s *priv) |
| { |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send "Write Enable (WREN)" command */ |
| |
| SPI_SEND(priv->dev, SST25_WREN); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| finfo("Enabled\n"); |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_unprotect |
| ****************************************************************************/ |
| |
| static void sst25xx_unprotect(struct sst25xx_dev_s *priv) |
| { |
| /* Send "Write enable status (EWSR)" */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| SPI_SEND(priv->dev, SST25_EWSR); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| |
| /* Send "Write status (WRSR)" */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| SPI_SEND(priv->dev, SST25_WRSR); |
| |
| /* Followed by the new status value */ |
| |
| SPI_SEND(priv->dev, 0); |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_sectorerase |
| ****************************************************************************/ |
| |
| static void sst25xx_sectorerase(struct sst25xx_dev_s *priv, off_t sector, |
| uint8_t type) |
| { |
| off_t offset; |
| |
| offset = sector << priv->sectorshift; |
| |
| finfo("sector: %08lx\n", (long)sector); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| sst25xx_waitwritecomplete(priv); |
| |
| /* Send write enable instruction */ |
| |
| sst25xx_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction |
| * that was passed in as the erase type. |
| */ |
| |
| SPI_SEND(priv->dev, type); |
| |
| /* Send the sector offset high byte first. For all of the supported |
| * parts, the sector number is completely contained in the first byte |
| * and the values used in the following two bytes don't really matter. |
| */ |
| |
| SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| SPI_SEND(priv->dev, offset & 0xff); |
| priv->lastwaswrite = true; |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| finfo("Erased\n"); |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_bulkerase |
| ****************************************************************************/ |
| |
| static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv) |
| { |
| finfo("priv: %p\n", priv); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| sst25xx_waitwritecomplete(priv); |
| |
| /* Send write enable instruction */ |
| |
| sst25xx_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send the "Bulk Erase (BE)" instruction */ |
| |
| SPI_SEND(priv->dev, SST25_BE); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| sst25xx_waitwritecomplete(priv); |
| |
| finfo("Return: OK\n"); |
| return OK; |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_pagewrite |
| ****************************************************************************/ |
| |
| static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, |
| FAR const uint8_t *buffer, |
| off_t page) |
| { |
| off_t offset = page << priv->pageshift; |
| |
| finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| sst25xx_waitwritecomplete(priv); |
| |
| /* Enable the write access to the FLASH */ |
| |
| sst25xx_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send "Page Program (PP)" command */ |
| |
| SPI_SEND(priv->dev, SST25_PP); |
| |
| /* Send the page offset high byte first. */ |
| |
| SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| SPI_SEND(priv->dev, offset & 0xff); |
| |
| /* Then write the specified number of bytes */ |
| |
| SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift); |
| priv->lastwaswrite = true; |
| |
| /* Deselect the FLASH: Chip Select high */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| finfo("Written\n"); |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_bytewrite |
| ****************************************************************************/ |
| |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| static inline void sst25xx_bytewrite(struct sst25xx_dev_s *priv, |
| FAR const uint8_t *buffer, off_t offset, |
| uint16_t count) |
| { |
| finfo("offset: %08lx count:%d\n", (long)offset, count); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| sst25xx_waitwritecomplete(priv); |
| |
| /* Enable the write access to the FLASH */ |
| |
| sst25xx_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send "Page Program (PP)" command */ |
| |
| SPI_SEND(priv->dev, SST25_PP); |
| |
| /* Send the page offset high byte first. */ |
| |
| SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| SPI_SEND(priv->dev, offset & 0xff); |
| |
| /* Then write the specified number of bytes */ |
| |
| SPI_SNDBLOCK(priv->dev, buffer, count); |
| priv->lastwaswrite = true; |
| |
| /* Deselect the FLASH: Chip Select high */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| finfo("Written\n"); |
| } |
| #endif |
| |
| /**************************************************************************** |
| * Name: sst25xx_erase |
| ****************************************************************************/ |
| |
| static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks) |
| { |
| FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; |
| size_t blocksleft = nblocks; |
| |
| finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
| |
| /* Lock access to the SPI bus until we complete the erase */ |
| |
| sst25xx_lock(priv->dev); |
| while (blocksleft > 0) |
| { |
| size_t sectorboundry; |
| size_t blkper; |
| |
| /* We will erase in either 4K sectors or 32K or 64K blocks depending |
| * on the largest unit we can use given the startblock and nblocks. |
| * This will reduce erase time (in the event we have partitions |
| * enabled and are doing a bulk erase which is translated into |
| * a block erase operation). |
| */ |
| |
| /* Test for 64K alignment */ |
| |
| blkper = 64 / 4; |
| sectorboundry = (startblock + blkper - 1) / blkper; |
| sectorboundry *= blkper; |
| |
| /* If we are on a sector boundary and have at least a full sector |
| * of blocks left to erase, then we can do a full sector erase. |
| */ |
| |
| if (startblock == sectorboundry && blocksleft >= blkper) |
| { |
| /* Do a 64k block erase */ |
| |
| sst25xx_sectorerase(priv, startblock, SST25_BE64); |
| startblock += blkper; |
| blocksleft -= blkper; |
| continue; |
| } |
| |
| /* Test for 32K block alignment */ |
| |
| blkper = 32 / 4; |
| sectorboundry = (startblock + blkper - 1) / blkper; |
| sectorboundry *= blkper; |
| |
| if (startblock == sectorboundry && blocksleft >= blkper) |
| { |
| /* Do a 32k block erase */ |
| |
| sst25xx_sectorerase(priv, startblock, SST25_BE32); |
| startblock += blkper; |
| blocksleft -= blkper; |
| continue; |
| } |
| else |
| { |
| /* Just do a sector erase */ |
| |
| sst25xx_sectorerase(priv, startblock, SST25_SE); |
| startblock++; |
| blocksleft--; |
| continue; |
| } |
| } |
| |
| sst25xx_unlock(priv->dev); |
| return (int)nblocks; |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_bread |
| ****************************************************************************/ |
| |
| static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks, |
| FAR uint8_t *buffer) |
| { |
| FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; |
| ssize_t nbytes; |
| |
| finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
| |
| /* On this device, we can handle the block read just like the |
| * byte-oriented read |
| */ |
| |
| nbytes = sst25xx_read(dev, startblock << priv->pageshift, |
| nblocks << priv->pageshift, buffer); |
| if (nbytes > 0) |
| { |
| return nbytes >> priv->pageshift; |
| } |
| |
| return (int)nbytes; |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_bwrite |
| ****************************************************************************/ |
| |
| static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks, |
| FAR const uint8_t *buffer) |
| { |
| FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; |
| size_t blocksleft = nblocks; |
| size_t pagesize = 1 << priv->pageshift; |
| |
| finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
| |
| /* Lock the SPI bus and write each page to FLASH */ |
| |
| sst25xx_lock(priv->dev); |
| while (blocksleft-- > 0) |
| { |
| sst25xx_pagewrite(priv, buffer, startblock); |
| buffer += pagesize; |
| startblock++; |
| } |
| |
| sst25xx_unlock(priv->dev); |
| return nblocks; |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_read |
| ****************************************************************************/ |
| |
| static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, |
| size_t nbytes, |
| FAR uint8_t *buffer) |
| { |
| FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; |
| |
| finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); |
| |
| /* Lock the SPI bus NOW because the following conditional call to |
| * sst25xx_waitwritecomplete must be executed with the bus locked. |
| */ |
| |
| sst25xx_lock(priv->dev); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| if (priv->lastwaswrite) |
| { |
| sst25xx_waitwritecomplete(priv); |
| } |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); |
| |
| /* Send "Read from Memory " instruction */ |
| |
| SPI_SEND(priv->dev, SST25_READ); |
| |
| /* Send the page offset high byte first. */ |
| |
| SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| SPI_SEND(priv->dev, offset & 0xff); |
| |
| /* Then read all of the requested bytes */ |
| |
| SPI_RECVBLOCK(priv->dev, buffer, nbytes); |
| |
| /* Deselect the FLASH and unlock the SPI bus */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); |
| sst25xx_unlock(priv->dev); |
| finfo("return nbytes: %d\n", (int)nbytes); |
| return nbytes; |
| } |
| |
| /**************************************************************************** |
| * Name: sst25xx_write |
| ****************************************************************************/ |
| |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, |
| size_t nbytes, |
| FAR const uint8_t *buffer) |
| { |
| FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; |
| int startpage; |
| int endpage; |
| int count; |
| int index; |
| int pagesize; |
| int bytestowrite; |
| |
| finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); |
| |
| /* We must test if the offset + count crosses one or more pages |
| * and perform individual writes. The devices can only write in |
| * page increments. |
| */ |
| |
| startpage = offset / (1 << priv->pageshift); |
| endpage = (offset + nbytes) / (1 << priv->pageshift); |
| |
| sst25xx_lock(priv->dev); |
| if (startpage == endpage) |
| { |
| /* All bytes within one programmable page. Just do the write. */ |
| |
| sst25xx_bytewrite(priv, buffer, offset, nbytes); |
| } |
| else |
| { |
| /* Write the 1st partial-page */ |
| |
| count = nbytes; |
| pagesize = (1 << priv->pageshift); |
| bytestowrite = pagesize - (offset & (pagesize - 1)); |
| sst25xx_bytewrite(priv, buffer, offset, bytestowrite); |
| |
| /* Update offset and count */ |
| |
| offset += bytestowrite; |
| count -= bytestowrite; |
| index = bytestowrite; |
| |
| /* Write full pages */ |
| |
| while (count >= pagesize) |
| { |
| sst25xx_bytewrite(priv, &buffer[index], offset, pagesize); |
| |
| /* Update offset and count */ |
| |
| offset += pagesize; |
| count -= pagesize; |
| index += pagesize; |
| } |
| |
| /* Now write any partial page at the end */ |
| |
| if (count > 0) |
| { |
| sst25xx_bytewrite(priv, &buffer[index], offset, count); |
| } |
| |
| priv->lastwaswrite = true; |
| } |
| |
| sst25xx_unlock(priv->dev); |
| return nbytes; |
| } |
| #endif /* CONFIG_MTD_BYTE_WRITE */ |
| |
| /**************************************************************************** |
| * Name: sst25xx_ioctl |
| ****************************************************************************/ |
| |
| static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, |
| unsigned long arg) |
| { |
| FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; |
| int ret = -EINVAL; /* Assume good command with bad parameters */ |
| |
| finfo("cmd: %d\n", cmd); |
| |
| switch (cmd) |
| { |
| case MTDIOC_GEOMETRY: |
| { |
| FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *) |
| ((uintptr_t)arg); |
| if (geo) |
| { |
| memset(geo, 0, sizeof(*geo)); |
| |
| /* Populate the geometry structure with information need to |
| * know the capacity and how to access the device. |
| * |
| * NOTE: that the device is treated as though it where just |
| * an array of fixed size blocks. That is most likely not |
| * true, but the client will expect the device logic to do |
| * whatever is necessary to make it appear so. |
| */ |
| |
| geo->blocksize = (1 << priv->pageshift); |
| geo->erasesize = (1 << priv->sectorshift); |
| geo->neraseblocks = priv->nsectors; |
| |
| ret = OK; |
| |
| finfo("blocksize: %" PRId32 " erasesize: %" PRId32 |
| " neraseblocks: %" PRId32 "\n", |
| geo->blocksize, geo->erasesize, geo->neraseblocks); |
| } |
| } |
| break; |
| |
| case BIOC_PARTINFO: |
| { |
| FAR struct partition_info_s *info = |
| (FAR struct partition_info_s *)arg; |
| if (info != NULL) |
| { |
| info->numsectors = priv->nsectors * |
| (priv->sectorshift - priv->pageshift); |
| info->sectorsize = 1 << priv->pageshift; |
| info->startsector = 0; |
| info->parent[0] = '\0'; |
| ret = OK; |
| } |
| } |
| break; |
| |
| case MTDIOC_BULKERASE: |
| { |
| /* Erase the entire device */ |
| |
| sst25xx_lock(priv->dev); |
| ret = sst25xx_bulkerase(priv); |
| sst25xx_unlock(priv->dev); |
| } |
| break; |
| |
| default: |
| ret = -ENOTTY; /* Bad command */ |
| break; |
| } |
| |
| finfo("return %d\n", ret); |
| return ret; |
| } |
| |
| /**************************************************************************** |
| * Public Functions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Name: sst25xx_initialize |
| * |
| * Description: |
| * Create an initialize MTD device instance. MTD devices are not |
| * registered in the file system, but are created as instances that can |
| * be bound to other functions (such as a block or character driver front |
| * end). |
| * |
| ****************************************************************************/ |
| |
| FAR struct mtd_dev_s *sst25xx_initialize(FAR struct spi_dev_s *dev) |
| { |
| FAR struct sst25xx_dev_s *priv; |
| int ret; |
| |
| finfo("dev: %p\n", dev); |
| |
| /* Allocate a state structure (we allocate the structure instead of using |
| * a fixed, static allocation so that we can handle multiple FLASH devices. |
| * The current implementation would handle only one FLASH part per SPI |
| * device (only because of the SPIDEV_FLASH(0) definition) and so would |
| * have to be extended to handle multiple FLASH parts on the same SPI bus. |
| */ |
| |
| priv = (FAR struct sst25xx_dev_s *) |
| kmm_zalloc(sizeof(struct sst25xx_dev_s)); |
| if (priv) |
| { |
| /* Initialize the allocated structure. (unsupported methods were |
| * nullified by kmm_zalloc). |
| */ |
| |
| priv->mtd.erase = sst25xx_erase; |
| priv->mtd.bread = sst25xx_bread; |
| priv->mtd.bwrite = sst25xx_bwrite; |
| priv->mtd.read = sst25xx_read; |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| priv->mtd.write = sst25xx_write; |
| #endif |
| priv->mtd.ioctl = sst25xx_ioctl; |
| priv->mtd.name = "sst25xx"; |
| priv->dev = dev; |
| priv->lastwaswrite = false; |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(dev, SPIDEV_FLASH(0), false); |
| |
| /* Identify the FLASH chip and get its capacity */ |
| |
| ret = sst25xx_readid(priv); |
| if (ret != OK) |
| { |
| /* Unrecognized! Discard all of that work we just did and return |
| * NULL |
| */ |
| |
| ferr("ERROR: Unrecognized\n"); |
| kmm_free(priv); |
| return NULL; |
| } |
| else |
| { |
| /* Make sure that the FLASH is unprotected so that we can write |
| * into it |
| */ |
| |
| sst25xx_unprotect(priv); |
| } |
| } |
| |
| /* Return the implementation-specific state structure as the MTD device */ |
| |
| finfo("Return %p\n", priv); |
| return (FAR struct mtd_dev_s *)priv; |
| } |