blob: 26f6e06b7a3f2692ef4c8eac58b5f1fed8cedb6d [file] [log] [blame]
/****************************************************************************
* arch/arm/src/xmc4/xmc4_spi.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <arch/board/board.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/wdog.h>
#include <nuttx/kmalloc.h>
#include <nuttx/clock.h>
#include <nuttx/mutex.h>
#include <nuttx/spi/spi.h>
#include "arm_internal.h"
#include "chip.h"
#include "xmc4_gpio.h"
#include "xmc4_spi.h"
#include "xmc4_usic.h"
#include "hardware/xmc4_usic.h"
#include "hardware/xmc4_pinmux.h"
#if defined(CONFIG_XMC4_SPI0) || defined(CONFIG_XMC4_SPI1) || \
defined(CONFIG_XMC4_SPI2) || defined(CONFIG_XMC4_SPI3) || \
defined(CONFIG_XMC4_SPI4) || defined(CONFIG_XMC4_SPI5)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* When SPI DMA is enabled, small DMA transfers will still be performed by
* polling logic. But we need a threshold value to determine what is small.
* That value is provided by CONFIG_XMC4_SPI_DMATHRESHOLD.
*/
#ifndef CONFIG_XMC4_SPI_DMATHRESHOLD
# define CONFIG_XMC4_SPI_DMATHRESHOLD 4
#endif
#ifdef CONFIG_XMC4_SPI_DMA
# if defined(CONFIG_XMC4_SPI0) && defined(CONFIG_XMC4_DMAC0)
# define XMC4_SPI0_DMA true
# else
# define XMC4_SPI0_DMA false
# endif
# if defined(CONFIG_XMC4_SPI1) && defined(CONFIG_XMC4_DMAC1)
# define XMC4_SPI1_DMA true
# else
# define XMC4_SPI1_DMA false
# endif
# if defined(CONFIG_XMC4_SPI2) && defined(CONFIG_XMC4_DMAC2)
# define XMC4_SPI2_DMA true
# else
# define XMC4_SPI2_DMA false
# endif
# if defined(CONFIG_XMC4_SPI3) && defined(CONFIG_XMC4_DMAC3)
# define XMC4_SPI3_DMA true
# else
# define XMC4_SPI3_DMA false
# endif
# if defined(CONFIG_XMC4_SPI4) && defined(CONFIG_XMC4_DMAC4)
# define XMC4_SPI4_DMA true
# else
# define XMC4_SPI4_DMA false
# endif
# if defined(CONFIG_XMC4_SPI5) && defined(CONFIG_XMC4_DMAC5)
# define XMC4_SPI5_DMA true
# else
# define XMC4_SPI5_DMA false
# endif
#endif
#ifndef CONFIG_DEBUG_SPI_INFO
# undef CONFIG_XMC4_SPI_REGDEBUG
#endif
#ifndef CONFIG_DEBUG_DMA_INFO
# undef CONFIG_XMC4_SPI_DMADEBUG
#endif
/* Clocking *****************************************************************/
/* Select MCU-specific settings */
#if defined(CONFIG_ARCH_CHIP_XMC4)
# define XMC4_SPI_CLOCK BOARD_PERIPH_FREQUENCY /* Frequency of the
* clock */
#else
# error Unrecognized XMC4xxx architecture
#endif
/* DMA timeout. The value is not critical; we just don't want the system to
* hang in the event that a DMA does not finish. This is set to
*/
#define DMA_TIMEOUT_MS (800)
#define DMA_TIMEOUT_TICKS MSEC2TICK(DMA_TIMEOUT_MS)
#define XMC_SPI_OVERSAMPLING (2UL)
/* Debug ******************************************************************
* Check if SPI debut is enabled
*/
#ifndef CONFIG_DEBUG_DMA_INFO
# undef CONFIG_XMC4_SPI_DMADEBUG
#endif
#define DMA_INITIAL 0
#define DMA_AFTER_SETUP 1
#define DMA_AFTER_START 2
#define DMA_CALLBACK 3
#define DMA_TIMEOUT 3
#define DMA_END_TRANSFER 4
#define DMA_NSAMPLES 5
/****************************************************************************
* Private Types
****************************************************************************/
/* The state of the one SPI chip select */
struct xmc4_spics_s
{
struct spi_dev_s spidev; /* Externally visible part of SPI interface */
uint32_t frequency; /* Requested clock frequency */
uint8_t mode; /* Mode 0,1,2,3 */
uint8_t nbits; /* Width of word in bits (8 to 16) */
uint8_t spino; /* SPI controller number */
uint8_t cs; /* Chip select number */
#ifdef CONFIG_XMC4_SPI_DMA
bool candma; /* DMA is supported */
sem_t dmawait; /* Used to wait for DMA completion */
struct wdog_s dmadog; /* Watchdog that handles DMA timeouts */
int result; /* DMA result */
DMA_HANDLE rxdma; /* SPI RX DMA handle */
DMA_HANDLE txdma; /* SPI TX DMA handle */
#endif
/* Debug stuff */
#ifdef CONFIG_XMC4_SPI_DMADEBUG
struct xmc4_dmaregs_s rxdmaregs[DMA_NSAMPLES];
struct xmc4_dmaregs_s txdmaregs[DMA_NSAMPLES];
#endif
};
/* Type of board-specific SPI status function */
typedef void (*select_t)(struct spi_dev_s *dev, uint32_t devid,
bool selected);
/* Chip select register offsets */
/* The overall state of one SPI controller */
struct xmc4_spidev_s
{
uint32_t base; /* SPI controller register base address */
mutex_t spilock; /* Assures mutually exclusive access to SPI */
select_t select; /* SPI select call-out */
bool initialized; /* TRUE: Controller has been initialized */
#ifdef CONFIG_XMC4_SPI_DMA
uint8_t rxintf; /* RX hardware interface number */
uint8_t txintf; /* TX hardware interface number */
#endif
/* Debug stuff */
#ifdef CONFIG_XMC4_SPI_REGDEBUG
bool wrlast; /* Last was a write */
uint32_t addresslast; /* Last address */
uint32_t valuelast; /* Last value */
int ntimes; /* Number of times */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Helpers */
#ifdef CONFIG_XMC4_SPI_REGDEBUG
static bool spi_checkreg(struct xmc4_spidev_s *spi, bool wr,
uint32_t value, uint32_t address);
#else
# define spi_checkreg(spi, wr, value, address) (false)
#endif
static inline uint32_t spi_getreg(struct xmc4_spidev_s *spi,
unsigned int offset);
static inline void spi_putreg(struct xmc4_spidev_s *spi, uint32_t value,
unsigned int offset);
static inline struct xmc4_spidev_s *spi_device(struct xmc4_spics_s *spics);
#ifdef CONFIG_DEBUG_SPI_INFO
static void spi_dumpregs(struct xmc4_spidev_s *spi, const char *msg);
#else
# define spi_dumpregs(spi, msg)
#endif
static inline void spi_flush(struct xmc4_spidev_s *spi);
/* DMA support */
#ifdef CONFIG_XMC4_SPI_DMA
#ifdef CONFIG_XMC4_SPI_DMADEBUG
# define spi_rxdma_sample(s, i) \
xmc4_dmasample((s)->rxdma, &(s)->rxdmaregs[i])
# define spi_txdma_sample(s, i) \
xmc4_dmasample((s)->txdma, &(s)->txdmaregs[i])
static void spi_dma_sampleinit(struct xmc4_spics_s *spics);
static void spi_dma_sampledone(struct xmc4_spics_s *spics);
#else
# define spi_rxdma_sample(s, i)
# define spi_txdma_sample(s, i)
# define spi_dma_sampleinit(s)
# define spi_dma_sampledone(s)
#endif
static void spi_rxcallback(DMA_HANDLE handle, void *arg, int result);
static void spi_txcallback(DMA_HANDLE handle, void *arg, int result);
static inline uintptr_t spi_regaddr(struct xmc4_spics_s *spics,
unsigned int offset);
#endif
/* SPI methods */
static int spi_lock(struct spi_dev_s *dev, bool lock);
static void spi_select(struct spi_dev_s *dev, uint32_t devid,
bool selected);
static uint32_t spi_setfrequency(struct spi_dev_s *dev, uint32_t frequency);
static void spi_setmode(struct spi_dev_s *dev, enum spi_mode_e mode);
static void spi_setbits(struct spi_dev_s *dev, int nbits);
static uint32_t spi_send(struct spi_dev_s *dev, uint32_t wd);
#ifdef CONFIG_XMC4_SPI_DMA
static void spi_exchange_nodma(struct spi_dev_s *dev,
const void *txbuffer, void *rxbuffer,
size_t nwords);
#endif
static void spi_exchange(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords);
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(struct spi_dev_s *dev, const void *buffer,
size_t nwords);
static void spi_recvblock(struct spi_dev_s *dev, void *buffer,
size_t nwords);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
#ifdef CONFIG_XMC4_SPI0
/* SPI0 driver operations */
static const struct spi_ops_s g_spi0ops =
{
.lock = spi_lock,
.select = spi_select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
#ifdef CONFIG_SPI_HWFEATURES
.hwfeatures = 0, /* Not supported */
#endif
.status = xmc4_spi0status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = xmc4_spi0cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
.registercallback = 0, /* Not implemented */
};
/* This is the overall state of the SPI0 controller */
static struct xmc4_spidev_s g_spi0dev =
{
.base = XMC4_USIC0_CH0_BASE,
.spilock = NXMUTEX_INITIALIZER,
.select = xmc4_spi0select,
#ifdef CONFIG_XMC4_SPI_DMA
.rxintf = DMACHAN_INTF_SPI0RX,
.txintf = DMACHAN_INTF_SPI0TX,
#endif
};
#endif
#ifdef CONFIG_XMC4_SPI1
/* SPI1 driver operations */
static const struct spi_ops_s g_spi1ops =
{
.lock = spi_lock,
.select = spi_select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = xmc4_spi1status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = xmc4_spi1cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
.registercallback = 0, /* Not implemented */
};
/* This is the overall state of the SPI1 controller */
static struct xmc4_spidev_s g_spi1dev =
{
.base = XMC4_USIC0_CH1_BASE,
.spilock = NXMUTEX_INITIALIZER,
.select = xmc4_spi1select,
#ifdef CONFIG_XMC4_SPI_DMA
.rxintf = DMACHAN_INTF_SPI1RX,
.txintf = DMACHAN_INTF_SPI1TX,
#endif
};
#endif
#ifdef CONFIG_XMC4_SPI2
/* SPI1 driver operations */
static const struct spi_ops_s g_spi2ops =
{
.lock = spi_lock,
.select = spi_select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = xmc4_spi2status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = xmc4_spi2cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
.registercallback = 0, /* Not implemented */
};
/* This is the overall state of the SPI2 controller */
static struct xmc4_spidev_s g_spi2dev =
{
.base = XMC4_USIC1_CH0_BASE,
.spilock = NXMUTEX_INITIALIZER,
.select = xmc4_spi2select,
#ifdef CONFIG_XMC4_SPI_DMA
.rxintf = DMACHAN_INTF_SPI2RX,
.txintf = DMACHAN_INTF_SPI2TX,
#endif
};
#endif
#ifdef CONFIG_XMC4_SPI3
/* SPI1 driver operations */
static const struct spi_ops_s g_spi3ops =
{
.lock = spi_lock,
.select = spi_select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = xmc4_spi3status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = xmc4_spi3cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
.registercallback = 0, /* Not implemented */
};
/* This is the overall state of the SPI3 controller */
static struct xmc4_spidev_s g_spi3dev =
{
.base = XMC4_USIC1_CH1_BASE,
.spilock = NXMUTEX_INITIALIZER,
.select = xmc4_spi3select,
#ifdef CONFIG_XMC4_SPI_DMA
.rxintf = DMACHAN_INTF_SPI3RX,
.txintf = DMACHAN_INTF_SPI3TX,
#endif
};
#endif
#ifdef CONFIG_XMC4_SPI4
/* SPI1 driver operations */
static const struct spi_ops_s g_spi4ops =
{
.lock = spi_lock,
.select = spi_select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = xmc4_spi4status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = xmc4_spi4cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
.registercallback = 0, /* Not implemented */
};
/* This is the overall state of the SPI4 controller */
static struct xmc4_spidev_s g_spi4dev =
{
.base = XMC4_USIC2_CH0_BASE,
.spilock = NXMUTEX_INITIALIZER,
.select = xmc4_spi4select,
#ifdef CONFIG_XMC4_SPI_DMA
.rxintf = DMACHAN_INTF_SPI4RX,
.txintf = DMACHAN_INTF_SPI4TX,
#endif
};
#endif
#ifdef CONFIG_XMC4_SPI5
/* SPI5 driver operations */
static const struct spi_ops_s g_spi5ops =
{
.lock = spi_lock,
.select = spi_select,
.setfrequency = spi_setfrequency,
.setmode = spi_setmode,
.setbits = spi_setbits,
.status = xmc4_spi5status,
#ifdef CONFIG_SPI_CMDDATA
.cmddata = xmc4_spi5cmddata,
#endif
.send = spi_send,
#ifdef CONFIG_SPI_EXCHANGE
.exchange = spi_exchange,
#else
.sndblock = spi_sndblock,
.recvblock = spi_recvblock,
#endif
.registercallback = 0, /* Not implemented */
};
/* This is the overall state of the SPI5 controller */
static struct xmc4_spidev_s g_spi5dev =
{
.base = XMC4_USIC2_CH1_BASE,
.spilock = NXMUTEX_INITIALIZER,
.select = xmc4_spi5select,
#ifdef CONFIG_XMC4_SPI_DMA
.rxintf = DMACHAN_INTF_SPI5RX,
.txintf = DMACHAN_INTF_SPI5TX,
#endif
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: spi_checkreg
*
* Description:
* Check if the current register access is a duplicate of the preceding.
*
* Input Parameters:
* value - The value to be written
* address - The address of the register to write to
*
* Returned Value:
* true: This is the first register access of this type.
* flase: This is the same as the preceding register access.
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_REGDEBUG
static bool spi_checkreg(struct xmc4_spidev_s *spi, bool wr, uint32_t value,
uint32_t address)
{
if (wr == spi->wrlast && /* Same kind of access? */
value == spi->valuelast && /* Same value? */
address == spi->addresslast) /* Same address? */
{
/* Yes, then just keep a count of the number of times we did this. */
spi->ntimes++;
return false;
}
else
{
/* Did we do the previous operation more than once? */
if (spi->ntimes > 0)
{
/* Yes... show how many times we did it */
spiinfo("...[Repeats %d times]...\n", spi->ntimes);
}
/* Save information about the new access */
spi->wrlast = wr;
spi->valuelast = value;
spi->addresslast = address;
spi->ntimes = 0;
}
/* Return true if this is the first time that we have done this operation */
return true;
}
#endif
/****************************************************************************
* Name: spi_getreg
*
* Description:
* Read an SPI register
*
****************************************************************************/
static inline uint32_t spi_getreg(struct xmc4_spidev_s *spi,
unsigned int offset)
{
uint32_t address = spi->base + offset;
uint32_t value = getreg32(address);
#ifdef CONFIG_XMC4_SPI_REGDEBUG
if (spi_checkreg(spi, false, value, address))
{
spiinfo("%08x->%08x\n", address, value);
}
#endif
return value;
}
/****************************************************************************
* Name: spi_putreg
*
* Description:
* Write a value to an SPI register
*
****************************************************************************/
static inline void spi_putreg(struct xmc4_spidev_s *spi, uint32_t value,
unsigned int offset)
{
uint32_t address = spi->base + offset;
#ifdef CONFIG_XMC4_SPI_REGDEBUG
if (spi_checkreg(spi, true, value, address))
{
spiinfo("%08x<-%08x\n", address, value);
}
#endif
putreg32(value, address);
}
/****************************************************************************
* Name: spi_dumpregs
*
* Description:
* Dump the contents of all SPI registers
*
* Input Parameters:
* spi - The SPI controller to dump
* msg - Message to print before the register data
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_DEBUG_SPI_INFO
static void spi_dumpregs(struct xmc4_spidev_s *spi, const char *msg)
{
spiinfo("%s:\n", msg);
spiinfo(" KSCFG:%08x FDR:%08x BRG:%08x\n",
getreg32(spi->base + XMC4_USIC_KSCFG_OFFSET),
getreg32(spi->base + XMC4_USIC_FDR_OFFSET),
getreg32(spi->base + XMC4_USIC_BRG_OFFSET));
spiinfo(" INPR:%08x DX0CR:%08x DX1CR:%08x\n",
getreg32(spi->base + XMC4_USIC_INPR_OFFSET),
getreg32(spi->base + XMC4_USIC_DX0CR_OFFSET),
getreg32(spi->base + XMC4_USIC_DX1CR_OFFSET));
spiinfo(" DX2CR:%08x DX3CR:%08x DX4CR:%08x\n",
getreg32(spi->base + XMC4_USIC_DX2CR_OFFSET),
getreg32(spi->base + XMC4_USIC_DX3CR_OFFSET),
getreg32(spi->base + XMC4_USIC_DX4CR_OFFSET));
spiinfo(" DX5CR:%08x SCTR:%08x TCSR:%08x\n",
getreg32(spi->base + XMC4_USIC_DX5CR_OFFSET),
getreg32(spi->base + XMC4_USIC_SCTR_OFFSET),
getreg32(spi->base + XMC4_USIC_TCSR_OFFSET));
spiinfo(" PCR:%08x CCR:%08x CMTR:%08x\n",
getreg32(spi->base + XMC4_USIC_PCR_OFFSET),
getreg32(spi->base + XMC4_USIC_CCR_OFFSET),
getreg32(spi->base + XMC4_USIC_CMTR_OFFSET));
spiinfo(" PSR:%08x PSCR:%08x RBUFSR:%08x\n",
getreg32(spi->base + XMC4_USIC_PSR_OFFSET),
getreg32(spi->base + XMC4_USIC_PSCR_OFFSET),
getreg32(spi->base + XMC4_USIC_RBUFSR_OFFSET));
spiinfo("RBUF01SR:%08x FMR:%08x TRBSR:%08x\n",
getreg32(spi->base + XMC4_USIC_RBUF01SR_OFFSET),
getreg32(spi->base + XMC4_USIC_FMR_OFFSET),
getreg32(spi->base + XMC4_USIC_TRBSR_OFFSET));
spiinfo(" TBCTR:%08x RBCTR:%08x TRBPTR:%08x\n",
getreg32(spi->base + XMC4_USIC_TBCTR_OFFSET),
getreg32(spi->base + XMC4_USIC_RBCTR_OFFSET),
getreg32(spi->base + XMC4_USIC_TRBPTR_OFFSET));
spiinfo(" TRBSR:%08x TRBSCR:%08x OUTDR:%08x\n",
getreg32(spi->base + XMC4_USIC_TRBSR_OFFSET),
getreg32(spi->base + XMC4_USIC_TRBSCR_OFFSET),
getreg32(spi->base + XMC4_USIC_OUTDR_OFFSET));
}
#endif
/****************************************************************************
* Name: spi_device
*
* Description:
* Given a chip select instance, return a pointer to the parent SPI
* controller instance.
*
****************************************************************************/
static inline struct xmc4_spidev_s *spi_device(struct xmc4_spics_s *spics)
{
#if defined(CONFIG_XMC4_SPI0)
if (spics->spino == 0)
{
return &g_spi0dev;
}
#endif
#if defined(CONFIG_XMC4_SPI1)
if (spics->spino == 1)
{
return &g_spi1dev;
}
#endif
#if defined(CONFIG_XMC4_SPI2)
if (spics->spino == 2)
{
return &g_spi2dev;
}
#endif
#if defined(CONFIG_XMC4_SPI3)
if (spics->spino == 3)
{
return &g_spi3dev;
}
#endif
#if defined(CONFIG_XMC4_SPI4)
if (spics->spino == 4)
{
return &g_spi4dev;
}
#endif
#if defined(CONFIG_XMC4_SPI5)
if (spics->spino == 5)
{
return &g_spi5dev;
}
#endif
/* Otherwise return NULL */
return NULL;
}
/****************************************************************************
* Name: spi_flush
*
* Description:
* Make sure that there are now dangling SPI transfer in progress
*
* Input Parameters:
* spi - SPI controller state
*
* Returned Value:
* None
*
****************************************************************************/
static inline void spi_flush(struct xmc4_spidev_s *spi)
{
uint32_t regval;
/* Wait for the transmit buffer/fifo to be "not full." */
do
{
regval = getreg32(spi->base + XMC4_USIC_TCSR_OFFSET);
}
while ((regval & USIC_TCSR_TDV) != 0);
}
/****************************************************************************
* Name: spi_dma_sampleinit
*
* Description:
* Initialize sampling of DMA registers (if CONFIG_XMC4_SPI_DMADEBUG)
*
* Input Parameters:
* spics - Chip select doing the DMA
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_DMADEBUG
static void spi_dma_sampleinit(struct xmc4_spics_s *spics)
{
/* Put contents of register samples into a known state */
memset(spics->rxdmaregs, 0xff,
DMA_NSAMPLES * sizeof(struct xmc4_dmaregs_s));
memset(spics->txdmaregs, 0xff,
DMA_NSAMPLES * sizeof(struct xmc4_dmaregs_s));
/* Then get the initial samples */
xmc4_dmasample(spics->rxdma, &spics->rxdmaregs[DMA_INITIAL]);
xmc4_dmasample(spics->txdma, &spics->txdmaregs[DMA_INITIAL]);
}
#endif
/****************************************************************************
* Name: spi_dma_sampledone
*
* Description:
* Dump sampled DMA registers
*
* Input Parameters:
* spics - Chip select doing the DMA
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_DMADEBUG
static void spi_dma_sampledone(struct xmc4_spics_s *spics)
{
/* Sample the final registers */
xmc4_dmasample(spics->rxdma, &spics->rxdmaregs[DMA_END_TRANSFER]);
xmc4_dmasample(spics->txdma, &spics->txdmaregs[DMA_END_TRANSFER]);
/* Then dump the sampled DMA registers
* Initial register values
*/
xmc4_dmadump(spics->txdma, &spics->txdmaregs[DMA_INITIAL],
"TX: Initial Registers");
xmc4_dmadump(spics->rxdma, &spics->rxdmaregs[DMA_INITIAL],
"RX: Initial Registers");
/* Register values after DMA setup */
xmc4_dmadump(spics->txdma, &spics->txdmaregs[DMA_AFTER_SETUP],
"TX: After DMA Setup");
xmc4_dmadump(spics->rxdma, &spics->rxdmaregs[DMA_AFTER_SETUP],
"RX: After DMA Setup");
/* Register values after DMA start */
xmc4_dmadump(spics->txdma, &spics->txdmaregs[DMA_AFTER_START],
"TX: After DMA Start");
xmc4_dmadump(spics->rxdma, &spics->rxdmaregs[DMA_AFTER_START],
"RX: After DMA Start");
/* Register values at the time of the TX and RX DMA callbacks
* -OR- DMA timeout.
*
* If the DMA timed out, then there will not be any RX DMA
* callback samples. There is probably no TX DMA callback
* samples either, but we don't know for sure.
*/
xmc4_dmadump(spics->txdma, &spics->txdmaregs[DMA_CALLBACK],
"TX: At DMA callback");
/* Register values at the end of the DMA */
if (spics->result == -ETIMEDOUT)
{
xmc4_dmadump(spics->rxdma, &spics->rxdmaregs[DMA_TIMEOUT],
"RX: At DMA timeout");
}
else
{
xmc4_dmadump(spics->rxdma, &spics->rxdmaregs[DMA_CALLBACK],
"RX: At DMA callback");
}
xmc4_dmadump(spics->txdma, &spics->txdmaregs[DMA_END_TRANSFER],
"TX: At End-of-Transfer");
xmc4_dmadump(spics->rxdma, &spics->rxdmaregs[DMA_END_TRANSFER],
"RX: At End-of-Transfer");
}
#endif
/****************************************************************************
* Name: spi_dmatimeout
*
* Description:
* The watchdog timeout setup when a has expired without completion of a
* DMA.
*
* Input Parameters:
* arg - The argument
*
* Returned Value:
* None
*
* Assumptions:
* Always called from the interrupt level with interrupts disabled.
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_DMA
static void spi_dmatimeout(wdparm_t arg)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)arg;
DEBUGASSERT(spics != NULL);
/* Sample DMA registers at the time of the timeout */
spi_rxdma_sample(spics, DMA_CALLBACK);
/* Report timeout result, perhaps overwriting any failure reports from
* the TX callback.
*/
spics->result = -ETIMEDOUT;
/* Then wake up the waiting thread */
nxsem_post(&spics->dmawait);
}
#endif
/****************************************************************************
* Name: spi_rxcallback
*
* Description:
* This callback function is invoked at the completion of the SPI RX DMA.
*
* Input Parameters:
* handle - The DMA handler
* arg - A pointer to the chip select structure
* result - The result of the DMA transfer
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_DMA
static void spi_rxcallback(DMA_HANDLE handle, void *arg, int result)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)arg;
DEBUGASSERT(spics != NULL);
/* Cancel the watchdog timeout */
wd_cancel(&spics->dmadog);
/* Sample DMA registers at the time of the callback */
spi_rxdma_sample(spics, DMA_CALLBACK);
/* Report the result of the transfer only if the TX callback has not
* already reported an error.
*/
if (spics->result == -EBUSY)
{
/* Save the result of the transfer if no error previously reported */
spics->result = result;
}
/* Then wake up the waiting thread */
nxsem_post(&spics->dmawait);
}
#endif
/****************************************************************************
* Name: spi_txcallback
*
* Description:
* This callback function is invoked at the completion of the SPI TX DMA.
*
* Input Parameters:
* handle - The DMA handler
* arg - A pointer to the chip select structure
* result - The result of the DMA transfer
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_DMA
static void spi_txcallback(DMA_HANDLE handle, void *arg, int result)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)arg;
DEBUGASSERT(spics != NULL);
spi_txdma_sample(spics, DMA_CALLBACK);
/* Do nothing on the TX callback unless an error is reported. This
* callback is not really important because the SPI exchange is not
* complete until the RX callback is received.
*/
if (result != OK && spics->result == -EBUSY)
{
/* Save the result of the transfer if an error is reported */
spics->result = result;
}
}
#endif
/****************************************************************************
* Name: spi_regaddr
*
* Description:
* Return the address of an SPI register
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_DMA
static inline uintptr_t spi_regaddr(struct xmc4_spics_s *spics,
unsigned int offset)
{
struct xmc4_spidev_s *spi = spi_device(spics);
return spi->base + offset;
}
#endif
/****************************************************************************
* Name: spi_lock
*
* Description:
* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected. After
* locking the SPI bus, the caller should then also call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device. If the SPI bus is being shared, then it
* may have been left in an incompatible state.
*
* Input Parameters:
* dev - Device-specific state data
* lock - true: Lock spi bus, false: unlock SPI bus
*
* Returned Value:
* None
*
****************************************************************************/
static int spi_lock(struct spi_dev_s *dev, bool lock)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)dev;
struct xmc4_spidev_s *spi = spi_device(spics);
int ret;
spiinfo("lock=%d\n", lock);
if (lock)
{
ret = nxmutex_lock(&spi->spilock);
}
else
{
ret = nxmutex_unlock(&spi->spilock);
}
return ret;
}
/****************************************************************************
* Name: spi_select
*
* Description:
* This function does not actually set the chip select line. Rather, it
* simply maps the device ID into a chip select number and retains that
* chip select number for later use.
*
* Input Parameters:
* dev - Device-specific state data
* frequency - The SPI frequency requested
*
* Returned Value:
* Returns the actual frequency selected
*
****************************************************************************/
static void spi_select(struct spi_dev_s *dev, uint32_t devid, bool selected)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)dev;
struct xmc4_spidev_s *spi = spi_device(spics);
/* Are we selecting or de-selecting the device? */
spiinfo("selected=%d\n", selected);
/* Perform any board-specific chip select operations. PIO chip select
* pins may be programmed by the board specific logic in one of two
* different ways. First, the pins may be programmed as SPI peripherals.
* In that case, the pins are completely controlled by the SPI driver.
* The xmc4_spi[0|1]select methods still needs to be provided, but they
* may be only stubs.
*
* An alternative way to program the PIO chip select pins is as normal
* PIO outputs. In that case, the automatic control of the CS pins is
* bypassed and this function must provide control of the chip select.
* NOTE: In this case, the PIO output pin does *not* have to be the
* same as the NPCS pin normal associated with the chip select number.
*/
spi->select(dev, devid, selected);
}
/****************************************************************************
* Name: spi_setfrequency
*
* Description:
* Set the SPI frequency.
*
* Input Parameters:
* dev - Device-specific state data
* frequency - The SPI frequency requested
*
* Returned Value:
* Returns the actual frequency selected
*
****************************************************************************/
static uint32_t spi_setfrequency(struct spi_dev_s *dev, uint32_t frequency)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)dev;
int channel = spics->spino;
int ret;
spiinfo("cs=%d frequency=%d\n", spics->cs, frequency);
/* Check if the red frequency is the same as the frequency selection */
if (spics->frequency == frequency)
{
/* We are already at this frequency. Return the actual. */
return frequency;
}
/* Set SPI frequency (USIC baudrate) */
ret = xmc4_usic_baudrate(channel, frequency, XMC_SPI_OVERSAMPLING);
if (ret < 0)
{
spierr("Setting frequency to %d failed!\n", frequency);
return 0;
}
/* Save the frequency setting */
spics->frequency = frequency;
spiinfo("Frequency configured to %d\n", frequency);
return frequency;
}
/****************************************************************************
* Name: spi_setmode
*
* Description:
* Set the SPI mode. Optional. See enum spi_mode_e for mode definitions
*
* Input Parameters:
* dev - Device-specific state data
* mode - The SPI mode requested
*
* Returned Value:
* none
*
****************************************************************************/
static void spi_setmode(struct spi_dev_s *dev, enum spi_mode_e mode)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)dev;
struct xmc4_spidev_s *spi = spi_device(spics);
uint32_t regval;
spiinfo("cs=%d mode=%d\n", spics->cs, mode);
/* Has the mode changed? */
if (mode != spics->mode)
{
/* Yes... Set the mode appropriately:
*
* SPI CPOL CPHA
* MODE
* 0 0 0
* 1 0 1
* 2 1 0
* 3 1 1
*/
regval = spi_getreg(spi, XMC4_USIC_BRG_OFFSET);
regval &= ~(USIC_BRG_SCLKCFG_MASK);
switch (mode)
{
case SPIDEV_MODE0: /* CPOL=0; CPHA=0 */
regval |= XMC4_SPI_MODE0;
break;
case SPIDEV_MODE1: /* CPOL=0; CPHA=1 */
regval |= XMC4_SPI_MODE1;
break;
case SPIDEV_MODE2: /* CPOL=1; CPHA=0 */
regval |= XMC4_SPI_MODE2;
break;
case SPIDEV_MODE3: /* CPOL=1; CPHA=1 */
regval |= XMC4_SPI_MODE3;
break;
default:
DEBUGASSERT(FALSE);
return;
}
spi_putreg(spi, regval, XMC4_USIC_BRG_OFFSET);
spiinfo("USIC BRG = %08x\n", regval);
/* Save the mode so that subsequent re-configurations will be faster */
spics->mode = mode;
}
}
/****************************************************************************
* Name: spi_setbits
*
* Description:
* Set the number if bits per word.
*
* Input Parameters:
* dev - Device-specific state data
* nbits - The number of bits requested
*
* Returned Value:
* none
*
****************************************************************************/
static void spi_setbits(struct spi_dev_s *dev, int nbits)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)dev;
struct xmc4_spidev_s *spi = spi_device(spics);
uint32_t regval;
spiinfo("cs=%d nbits=%d\n", spics->cs, nbits);
DEBUGASSERT(nbits > 7 && nbits < 17);
/* Has the number of bits changed? */
if (nbits != spics->nbits)
{
/* Yes... Configure the new word length */
regval = spi_getreg(spi, XMC4_USIC_SCTR_OFFSET);
regval &= ~(USIC_SCTR_WLE_MASK);
regval |= USIC_SCTR_WLE(nbits);
spi_putreg(spi, regval, XMC4_USIC_SCTR_OFFSET);
spiinfo("SCTR = %08x\n", regval);
/* Save the selection so that subsequent re-configs will be faster. */
spics->nbits = nbits;
}
}
/****************************************************************************
* Name: spi_send
*
* Description:
* Exchange one word on SPI
*
* Input Parameters:
* dev - Device-specific state data
* wd - The word to send. the size of the data is determined by the
* number of bits selected for the SPI interface.
*
* Returned Value:
* response
*
****************************************************************************/
static uint32_t spi_send(struct spi_dev_s *dev, uint32_t wd)
{
uint8_t txbyte;
uint8_t rxbyte;
/* spi_exchange can do this. Note: right now, this only deals with 8-bit
* words. If the SPI interface were configured for words of other sizes,
* this would fail.
*/
txbyte = (uint8_t)wd;
rxbyte = (uint8_t)0;
spi_exchange(dev, &txbyte, &rxbyte, 1);
spiinfo("Sent %02x received %02x\n", txbyte, rxbyte);
return (uint32_t)rxbyte;
}
/****************************************************************************
* Name: spi_exchange (and spi_exchange_nodma)
*
* Description:
* Exchange a block of data from SPI. There are two versions of this
* function: (1) One that is enabled only when CONFIG_XMC4_SPI_DMA=y
* that performs DMA SPI transfers, but only when a larger block of
* data is being transferred. And (2) another version that does polled
* SPI transfers. When CONFIG_XMC4_SPI_DMA=n the latter is the only
* version available; when CONFIG_XMC4_SPI_DMA=y, this version is only
* used for short SPI transfers and gets renamed as spi_exchange_nodma).
*
* Input Parameters:
* dev - Device-specific state data
* txbuffer - A pointer to the buffer of data to be sent
* rxbuffer - A pointer to the buffer in which to receive data
* nwords - the length of data that to be exchanged in units of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into
* uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifdef CONFIG_XMC4_SPI_DMA
static void spi_exchange_nodma(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords)
#else
static void spi_exchange(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords)
#endif
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)dev;
struct xmc4_spidev_s *spi = spi_device(spics);
uint32_t regval;
uint32_t data;
uint16_t *rxptr16;
uint16_t *txptr16;
uint8_t *rxptr8;
uint8_t *txptr8;
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
/* Set up transmit mode */
regval = spi_getreg(spi, XMC4_USIC_CCR_OFFSET);
regval &= ~USIC_CCR_MODE_MASK;
regval |= USIC_CCR_MODE_SPI;
regval |= (USIC_CCR_RIEN | USIC_CCR_AIEN);
spi_putreg(spi, regval, XMC4_USIC_CCR_OFFSET);
/* Set up working pointers */
if (spics->nbits > 8)
{
rxptr16 = (uint16_t *)rxbuffer;
txptr16 = (uint16_t *)txbuffer;
rxptr8 = NULL;
txptr8 = NULL;
}
else
{
rxptr16 = NULL;
txptr16 = NULL;
rxptr8 = (uint8_t *)rxbuffer;
txptr8 = (uint8_t *)txbuffer;
}
/* Make sure that any previous transfer is flushed from the hardware */
spi_flush(spi);
/* Loop, sending each word in the user-provided data buffer.
*
* Note: Good SPI performance would require that we implement
* DMA transfers!
*/
for (; nwords > 0; nwords--)
{
/* Get the data to send (0xff if there is no data source). */
if (txptr8)
{
data = (uint32_t)*txptr8++;
}
else if (txptr16)
{
data = (uint32_t)*txptr16++;
}
else
{
data = 0xffff;
}
/* Write the data to transmitted to the Transmit Data Register (TDR) */
spi_putreg(spi, data, XMC4_USIC_TBUF_OFFSET);
/* Wait until the last bit be transferred */
while ((spi_getreg(spi, XMC4_USIC_PSR_OFFSET) &
(USIC_PSR_TSIF)) == 0)
{
}
spi_putreg(spi, USIC_PSCR_CTSIF, XMC4_USIC_PSCR_OFFSET);
/* Wait to get some data */
while ((spi_getreg(spi, XMC4_USIC_PSR_OFFSET) &
(USIC_PSR_RIF | USIC_PSR_AIF)) == 0)
{
}
spi_putreg(spi, (USIC_PSCR_CRIF | USIC_PSCR_CAIF),
XMC4_USIC_PSCR_OFFSET);
/* Read the received data from the SPI Data Register. */
data = spi_getreg(spi, XMC4_USIC_RBUF_OFFSET);
if (rxptr8)
{
*rxptr8++ = (uint8_t)data;
}
else if (rxptr16)
{
*rxptr16++ = (uint16_t)data;
}
}
}
#ifdef CONFIG_XMC4_SPI_DMA
static void spi_exchange(struct spi_dev_s *dev, const void *txbuffer,
void *rxbuffer, size_t nwords)
{
struct xmc4_spics_s *spics = (struct xmc4_spics_s *)dev;
struct xmc4_spidev_s *spi = spi_device(spics);
uint32_t rxflags;
uint32_t txflags;
uint32_t txdummy;
uint32_t rxdummy;
uint32_t regaddr;
uint32_t memaddr;
uint32_t width;
size_t nbytes;
int ret;
/* Convert the number of word to a number of bytes */
nbytes = (spics->nbits > 8) ? nwords << 1 : nwords;
/* If we cannot do DMA -OR- if this is a small SPI transfer, then let
* spi_exchange_nodma() do the work.
*/
if (!spics->candma || nbytes <= CONFIG_XMC4_SPI_DMATHRESHOLD)
{
spi_exchange_nodma(dev, txbuffer, rxbuffer, nwords);
return;
}
spiinfo("txbuffer=%p rxbuffer=%p nwords=%d\n", txbuffer, rxbuffer, nwords);
spics = (struct xmc4_spics_s *)dev;
spi = spi_device(spics);
DEBUGASSERT(spics && spi);
/* Make sure that any previous transfer is flushed from the hardware */
spi_flush(spi);
/* Sample initial DMA registers */
spi_dma_sampleinit(spics);
/* Select the source and destination width bits */
if (spics->nbits > 8)
{
width = (DMACH_FLAG_PERIPHWIDTH_16BITS | DMACH_FLAG_MEMWIDTH_16BITS);
}
else
{
width = (DMACH_FLAG_PERIPHWIDTH_8BITS | DMACH_FLAG_MEMWIDTH_8BITS);
}
/* Configure the DMA channels. There are four different cases:
*
* 1) A true exchange with the memory address incrementing on both
* RX and TX channels,
* 2) A read operation with the memory address incrementing only on
* the receive channel,
* 3) A write operation where the memory address increments only on
* the receive channel, and
* 4) A corner case where there the memory address does not increment
* on either channel. This case might be used in certain cases
* where you want to assure that certain number of clocks are
* provided on the SPI bus.
*/
/* Configure the RX DMA channel */
rxflags = DMACH_FLAG_FIFOCFG_LARGEST |
((uint32_t)spi->rxintf << DMACH_FLAG_PERIPHPID_SHIFT) |
DMACH_FLAG_PERIPHH2SEL | DMACH_FLAG_PERIPHISPERIPH |
DMACH_FLAG_PERIPHCHUNKSIZE_1 |
((uint32_t)(15) << DMACH_FLAG_MEMPID_SHIFT) |
DMACH_FLAG_MEMCHUNKSIZE_1;
/* Set the source and destination width bits */
rxflags |= width;
/* Handle the case where there is no sink buffer */
if (!rxbuffer)
{
/* No sink data buffer. Point to our dummy buffer and leave
* the rxflags so that no address increment is performed.
*/
rxbuffer = (void *)&rxdummy;
}
else
{
/* A receive buffer is available.
*
* Invalidate the RX buffer memory to force re-fetching from RAM when
* the DMA completes
*/
xmc4_cmcc_invalidate((uintptr_t)rxbuffer,
(uintptr_t)rxbuffer + nbytes);
/* Use normal RX memory incrementing. */
rxflags |= DMACH_FLAG_MEMINCREMENT;
}
/* Configure the TX DMA channel */
txflags = DMACH_FLAG_FIFOCFG_LARGEST |
((uint32_t)spi->txintf << DMACH_FLAG_PERIPHPID_SHIFT) |
DMACH_FLAG_PERIPHH2SEL | DMACH_FLAG_PERIPHISPERIPH |
DMACH_FLAG_PERIPHCHUNKSIZE_1 |
((uint32_t)(15) << DMACH_FLAG_MEMPID_SHIFT) |
DMACH_FLAG_MEMCHUNKSIZE_1;
/* Set the source and destination width bits */
txflags |= width;
/* Handle the case where there is no source buffer */
if (!txbuffer)
{
/* No source data buffer. Point to our dummy buffer and leave
* the txflags so that no address increment is performed.
*/
txdummy = 0xffffffff;
txbuffer = (const void *)&txdummy;
}
else
{
/* Source data is available. Use normal TX memory incrementing. */
txflags |= DMACH_FLAG_MEMINCREMENT;
}
/* Then configure the DMA channels to make it so */
xmc4_dmaconfig(spics->rxdma, rxflags);
xmc4_dmaconfig(spics->txdma, txflags);
/* Configure the RX side of the exchange transfer */
regaddr = spi_regaddr(spics, XMC4_SPI_RDR_OFFSET);
memaddr = (uintptr_t)rxbuffer;
ret = xmc4_dmarxsetup(spics->rxdma, regaddr, memaddr, nwords);
if (ret < 0)
{
dmaerr("ERROR: xmc4_dmarxsetup failed: %d\n", ret);
return;
}
spi_rxdma_sample(spics, DMA_AFTER_SETUP);
/* Configure the TX side of the exchange transfer */
regaddr = spi_regaddr(spics, XMC4_SPI_TDR_OFFSET);
memaddr = (uintptr_t)txbuffer;
ret = xmc4_dmatxsetup(spics->txdma, regaddr, memaddr, nwords);
if (ret < 0)
{
dmaerr("ERROR: xmc4_dmatxsetup failed: %d\n", ret);
return;
}
spi_txdma_sample(spics, DMA_AFTER_SETUP);
/* Start the DMA transfer */
spics->result = -EBUSY;
ret = xmc4_dmastart(spics->rxdma, spi_rxcallback, (void *)spics);
if (ret < 0)
{
dmaerr("ERROR: RX xmc4_dmastart failed: %d\n", ret);
return;
}
spi_rxdma_sample(spics, DMA_AFTER_START);
ret = xmc4_dmastart(spics->txdma, spi_txcallback, (void *)spics);
if (ret < 0)
{
dmaerr("ERROR: RX xmc4_dmastart failed: %d\n", ret);
xmc4_dmastop(spics->rxdma);
return;
}
spi_txdma_sample(spics, DMA_AFTER_START);
/* Wait for DMA completion. This is done in a loop because there may be
* false alarm semaphore counts that cause xmc4_wait() not fail to wait
* or to wake-up prematurely (for example due to the receipt of a signal).
* We know that the DMA has completed when the result is anything other
* that -EBUSY.
*/
do
{
/* Start (or re-start) the watchdog timeout */
ret = wd_start(&spics->dmadog, DMA_TIMEOUT_TICKS,
spi_dmatimeout, (wdparm_t)spics);
if (ret != OK)
{
spierr("ERROR: wd_start failed: %d\n", ret);
}
/* Wait for the DMA complete */
ret = nxsem_wait_uninterruptible(&spics->dmawait);
/* Cancel the watchdog timeout */
wd_cancel(&spics->dmadog);
/* Check if we were awakened by an error of some kind. */
if (ret < 0)
{
DEBUGPANIC();
return;
}
/* Not that we might be awakened before the wait is over due to
* residual counts on the semaphore. So, to handle, that case,
* we loop until something changes the DMA result to any value other
* than -EBUSY.
*/
}
while (spics->result == -EBUSY);
/* Dump the sampled DMA registers */
spi_dma_sampledone(spics);
/* Make sure that the DMA is stopped (it will be stopped automatically
* on normal transfers, but not necessarily when the transfer terminates
* on an error condition).
*/
xmc4_dmastop(spics->rxdma);
xmc4_dmastop(spics->txdma);
/* All we can do is complain if the DMA fails */
if (spics->result)
{
spierr("ERROR: DMA failed with result: %d\n", spics->result);
}
}
#endif /* CONFIG_XMC4_SPI_DMA */
/****************************************************************************
* Name: spi_sndblock
*
* Description:
* Send a block of data on SPI
*
* Input Parameters:
* dev - Device-specific state data
* buffer - A pointer to the buffer of data to be sent
* nwords - the length of data to send from the buffer in number of words.
* The wordsize is determined by the number of bits-per-word
* selected for the SPI interface. If nbits <= 8, the data is
* packed into uint8_t's; if nbits >8, the data is packed into
* uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_sndblock(struct spi_dev_s *dev, const void *buffer,
size_t nwords)
{
/* spi_exchange can do this. */
spi_exchange(dev, buffer, NULL, nwords);
}
#endif
/****************************************************************************
* Name: spi_recvblock
*
* Description:
* Receive a block of data from SPI
*
* Input Parameters:
* dev - Device-specific state data
* buffer - A pointer to the buffer in which to receive data
* nwords - the length of data that can be received in the buffer in number
* of words. The wordsize is determined by the number of
* bits-per-word selected for the SPI interface. If nbits <= 8,
* the data is packed into uint8_t's; if nbits >8, the data is
* packed into uint16_t's
*
* Returned Value:
* None
*
****************************************************************************/
#ifndef CONFIG_SPI_EXCHANGE
static void spi_recvblock(struct spi_dev_s *dev, void *buffer, size_t nwords)
{
/* spi_exchange can do this. */
spi_exchange(dev, NULL, buffer, nwords);
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: xmc4_spibus_initialize
*
* Description:
* Initialize the selected SPI port
*
* Input Parameter:
* channel - USIC channel number (also equal to SPIn).
*
* Returned Value:
* Valid SPI device structure reference on success; a NULL on failure
*
****************************************************************************/
struct spi_dev_s *xmc4_spibus_initialize(int channel)
{
struct xmc4_spidev_s *spi;
struct xmc4_spics_s *spics;
int spino = channel;
irqstate_t flags;
uint32_t regval;
int ret;
spiinfo("channel: %d\n", channel);
DEBUGASSERT(spino >= 0 && spino <= 5);
/* Allocate a new state structure for this chip select. NOTE that there
* is no protection if the same chip select is used in two different
* chip select structures.
*/
spics = kmm_zalloc(sizeof(struct xmc4_spics_s));
if (!spics)
{
spierr("ERROR: Failed to allocate a chip select structure\n");
return NULL;
}
/* Set up the initial state for this chip select structure. Other fields
* were zeroed by kmm_zalloc().
*/
#ifdef CONFIG_XMC4_SPI_DMA
/* Can we do DMA on this peripheral? */
spics->candma = spino ? XMC4_SPI1_DMA : XMC4_SPI0_DMA;
/* Pre-allocate DMA channels. These allocations exploit that fact that
* SPI0 is managed by DMAC0 and SPI1 is managed by DMAC1. Hence,
* the SPI number (spino) is the same as the DMAC number.
*/
if (spics->candma)
{
spics->rxdma = xmc4_dmachannel(0);
if (!spics->rxdma)
{
spierr("ERROR: Failed to allocate the RX DMA channel\n");
spics->candma = false;
}
}
if (spics->candma)
{
spics->txdma = xmc4_dmachannel(0);
if (!spics->txdma)
{
spierr("ERROR: Failed to allocate the TX DMA channel\n");
xmc4_dmafree(spics->rxdma);
spics->rxdma = NULL;
spics->candma = false;
}
}
#endif
/* Select the SPI operations */
#if defined(CONFIG_XMC4_SPI0)
if (spino == 0)
{
spics->spidev.ops = &g_spi0ops;
}
else
#endif
#if defined(CONFIG_XMC4_SPI1)
if (spino == 1)
{
spics->spidev.ops = &g_spi1ops;
}
else
#endif
#if defined(CONFIG_XMC4_SPI2)
if (spino == 2)
{
spics->spidev.ops = &g_spi2ops;
}
else
#endif
#if defined(CONFIG_XMC4_SPI3)
if (spino == 3)
{
spics->spidev.ops = &g_spi3ops;
}
else
#endif
#if defined(CONFIG_XMC4_SPI4)
if (spino == 4)
{
spics->spidev.ops = &g_spi4ops;
}
else
#endif
#if defined(CONFIG_XMC4_SPI5)
if (spino == 5)
{
spics->spidev.ops = &g_spi5ops;
}
else
#endif
{
spierr("ERROR: spino invalid: %d\n", spino);
}
/* Save the chip select and SPI controller numbers */
/* spics->cs = csno; */
spics->cs = 0;
spics->spino = spino;
/* Set to mode=0 and nbits=8 and impossible frequency. The SPI will only
* be reconfigured if there is a change.
*/
spics->nbits = 8;
/* Get the SPI device structure associated with the chip select */
spi = spi_device(spics);
/* Has the SPI hardware been initialized? */
if (!spi->initialized)
{
/* Enable clocking to the SPI block */
flags = enter_critical_section();
/* Enable the USIC channel */
ret = xmc4_enable_usic_channel(channel);
if (ret < 0)
{
spierr("ERROR: Failed to enable USIC channel!\n");
goto errchannel;
}
#if defined(CONFIG_XMC4_SPI0)
if (spino == 0)
{
/* Configure multiplexed pins as connected on the board. Chip
* select pins must be selected by board-specific logic.
*/
xmc4_gpio_config(GPIO_SPI0_MISO);
xmc4_gpio_config(GPIO_SPI0_MOSI);
xmc4_gpio_config(GPIO_SPI0_SCLK);
}
else
#endif
#if defined(CONFIG_XMC4_SPI1)
if (spino == 1)
{
/* Configure multiplexed pins as connected on the board. Chip
* select pins must be selected by board-specific logic.
*/
xmc4_gpio_config(GPIO_SPI1_MISO);
xmc4_gpio_config(GPIO_SPI1_MOSI);
xmc4_gpio_config(GPIO_SPI1_SCLK);
}
else
#endif
#if defined(CONFIG_XMC4_SPI2)
if (spino == 2)
{
/* Configure multiplexed pins as connected on the board. Chip
* select pins must be selected by board-specific logic.
*/
xmc4_gpio_config(GPIO_SPI2_MISO);
xmc4_gpio_config(GPIO_SPI2_MOSI);
xmc4_gpio_config(GPIO_SPI2_SCLK);
}
else
#endif
#if defined(CONFIG_XMC4_SPI3)
if (spino == 3)
{
/* Configure multiplexed pins as connected on the board. Chip
* select pins must be selected by board-specific logic.
*/
xmc4_gpio_config(GPIO_SPI3_MISO);
xmc4_gpio_config(GPIO_SPI3_MOSI);
xmc4_gpio_config(GPIO_SPI3_SCLK);
}
else
#endif
#if defined(CONFIG_XMC4_SPI4)
if (spino == 4)
{
/* Configure multiplexed pins as connected on the board. Chip
* select pins must be selected by board-specific logic.
*/
xmc4_gpio_config(GPIO_SPI4_MISO);
xmc4_gpio_config(GPIO_SPI4_MOSI);
xmc4_gpio_config(GPIO_SPI4_SCLK);
}
else
#endif
#if defined(CONFIG_XMC4_SPI5)
if (spino == 5)
{
/* Configure multiplexed pins as connected on the board. Chip
* select pins must be selected by board-specific logic.
*/
xmc4_gpio_config(GPIO_SPI5_MISO);
xmc4_gpio_config(GPIO_SPI5_MOSI);
xmc4_gpio_config(GPIO_SPI5_SCLK);
}
else
#endif
{
spierr("ERROR: spino invalid: %d\n", spino);
}
/* Leave critical section */
leave_critical_section(flags);
/* Set initial clock to 1MHz */
ret = xmc4_usic_baudrate(channel, 1000000, XMC_SPI_OVERSAMPLING);
if (ret < 0)
{
spierr("Setting initial clock failed!\n");
goto errchannel;
}
/* Set DX0CR input source path and input switch */
regval = getreg32(spi->base + XMC4_USIC_DX0CR_OFFSET);
regval &= ~USIC_DXCR_DSEL_MASK;
regval |= USIC_DXCR_DSEL_DX(BOARD_SPI_DX);
regval |= USIC_DXCR_INSW;
putreg32(regval, spi->base + XMC4_USIC_DX0CR_OFFSET);
/* Configuration of USIC Shift Control
* Transmission Mode (TRM) = 1
* Passive Data Level (PDL) = 1
* Serial Direction MSB (SDIR) = 1
*/
regval = USIC_SCTR_PDL1 | USIC_SCTR_TRM_1LEVEL | USIC_SCTR_SDIR |
USIC_SCTR_FLE(64) | USIC_SCTR_WLE(spics->nbits);
spi_putreg(spi, regval, XMC4_USIC_SCTR_OFFSET);
/* Configuration of USIC Transmit Control/Status Register
* TBUF Data Enable (TDEN) = 1
* TBUF Data Single Shot Mode (TDSSM) = 1
*/
regval = USIC_TCSR_HPCMD | USIC_TCSR_TDEN_TDIV | USIC_TCSR_TDSSM;
spi_putreg(spi, regval, XMC4_USIC_TCSR_OFFSET);
/* Configuration of Protocol Control Register */
regval = USIC_PCR_SSCMODE_MSLSEN | USIC_PCR_SSCMODE_SELCTR |
USIC_PCR_SSCMODE_FEM | USIC_PCR_SSCMODE_SELINV;
spi_putreg(spi, regval, XMC4_USIC_PCR_OFFSET);
/* Define SPI Mode 0 by default */
regval = spi_getreg(spi, XMC4_USIC_BRG_OFFSET);
regval &= ~(USIC_BRG_SCLKCFG_MASK);
regval |= XMC4_SPI_MODE0;
spi_putreg(spi, regval, XMC4_USIC_BRG_OFFSET);
/* Clear protocol status */
spi_putreg(spi, 0xfffffffful, XMC4_USIC_PSCR_OFFSET);
/* Disable the parity */
spi_putreg(spi, 0, XMC4_USIC_CCR_OFFSET);
spi->initialized = true;
#ifdef CONFIG_XMC4_SPI_DMA
nxsem_init(&spics->dmawait, 0, 0);
#endif
spi_dumpregs(spi, "After initialization");
}
return &spics->spidev;
errchannel:
kmm_free(spics);
return NULL;
}
#endif /* CONFIG_XMC4_SPI0 || CONFIG_XMC4_SPI1 */