| /**************************************************************************** |
| * libs/libnx/nxglib/nxglib_splitline.c |
| * |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. The |
| * ASF licenses this file to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance with the |
| * License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| * License for the specific language governing permissions and limitations |
| * under the License. |
| * |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Included Files |
| ****************************************************************************/ |
| |
| #include <nuttx/config.h> |
| |
| #include <string.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <stdlib.h> |
| #include <debug.h> |
| |
| #include <nuttx/nx/nxglib.h> |
| |
| /**************************************************************************** |
| * Private Types |
| ****************************************************************************/ |
| |
| struct b16point_s |
| { |
| b16_t x; |
| b16_t y; |
| }; |
| |
| /**************************************************************************** |
| * Private Functions |
| ****************************************************************************/ |
| |
| static b16_t nxgl_interpolate(b16_t x, b16_t dy, b16_t dxdy) |
| { |
| b16_t dx = b16mulb16(dy, dxdy); |
| return x + dx; |
| } |
| |
| /**************************************************************************** |
| * Public Functions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Name: nxgl_splitline |
| * |
| * Description: |
| * In the general case, a line with width can be represented as a |
| * parallelogram with a triangle at the top and bottom. Triangles and |
| * parallelograms are both degenerate versions of a trapeziod. This |
| * function breaks a wide line into triangles and trapezoids. This |
| * function also detects other degenerate cases: |
| * |
| * 1. If y1 == y2 then the line is horizontal and is better represented |
| * as a rectangle. |
| * 2. If x1 == x2 then the line is vertical and also better represented |
| * as a rectangle. |
| * 3. If the width of the line is 1, then there are no triangles at the |
| * top and bottom (this may also be the case if the width is narrow |
| * and the line is near vertical). |
| * 4. If the line is oriented is certain angles, it may consist only of |
| * the upper and lower triangles with no trapezoid in between. In |
| * this case, 3 trapezoids will be returned, but traps[1] will be |
| * degenerate. |
| * |
| * Input Parameters: |
| * vector - A pointer to the vector described the line to be drawn. |
| * traps - A pointer to a array of trapezoids (size 3). |
| * rect - A pointer to a rectangle. |
| * |
| * Returned Value: |
| * 0: Line successfully broken up into three trapezoids. Values in |
| * traps[0], traps[1], and traps[2] are valid. |
| * 1: Line successfully represented by one trapezoid. Value in traps[1] |
| * is valid. |
| * 2: Line successfully represented by one rectangle. Value in rect is |
| * valid |
| * <0: On errors, a negated errno value is returned. |
| * |
| ****************************************************************************/ |
| |
| int nxgl_splitline(FAR struct nxgl_vector_s *vector, |
| FAR struct nxgl_trapezoid_s *traps, |
| FAR struct nxgl_rect_s *rect, |
| nxgl_coord_t linewidth) |
| { |
| struct nxgl_vector_s line; |
| nxgl_coord_t iheight; |
| nxgl_coord_t iwidth; |
| nxgl_coord_t iyoffset; |
| struct b16point_s quad[4]; |
| b16_t b16xoffset; |
| b16_t b16yoffset; |
| b16_t b16dxdy; |
| b16_t angle; |
| b16_t cosangle; |
| b16_t sinangle; |
| b16_t b16x; |
| b16_t b16y; |
| |
| ginfo("vector: (%d,%d)->(%d,%d) linewidth: %d\n", |
| vector->pt1.x, vector->pt1.y, vector->pt2.x, vector->pt2.y, |
| linewidth); |
| |
| /* First, check the linewidth */ |
| |
| if (linewidth < 1) |
| { |
| return -EINVAL; |
| } |
| |
| /* Then make sure that the start position of the line is above the end |
| * position of the line... in raster order. |
| */ |
| |
| if (vector->pt1.y < vector->pt2.y) |
| { |
| /* Vector is already in raster order */ |
| |
| memcpy(&line, vector, sizeof(struct nxgl_vector_s)); |
| } |
| else if (vector->pt1.y > vector->pt2.y) |
| { |
| /* Swap the top and bottom */ |
| |
| line.pt1.x = vector->pt2.x; |
| line.pt1.y = vector->pt2.y; |
| line.pt2.x = vector->pt1.x; |
| line.pt2.y = vector->pt1.y; |
| } |
| else /* if (vector->pt1.y == vector->pt2.y) */ |
| { |
| /* First degenerate case: The line is horizontal. */ |
| |
| if (vector->pt1.x < vector->pt2.x) |
| { |
| rect->pt1.x = vector->pt1.x; |
| rect->pt2.x = vector->pt2.x; |
| } |
| else |
| { |
| rect->pt1.x = vector->pt2.x; |
| rect->pt2.x = vector->pt1.x; |
| } |
| |
| /* The height of the rectangle is the width of the line, half above |
| * and half below. |
| */ |
| |
| rect->pt1.y = vector->pt1.y - (linewidth >> 1); |
| rect->pt2.y = rect->pt1.y + linewidth - 1; |
| |
| ginfo("Horizontal rect: (%d,%d),(%d,%d)\n", |
| rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y); |
| |
| return 2; |
| } |
| |
| /* Check if the line is vertical */ |
| |
| if (line.pt1.x == line.pt2.x) |
| { |
| /* Second degenerate case: The line is vertical. */ |
| |
| rect->pt1.y = line.pt1.y; |
| rect->pt2.y = line.pt2.y; |
| |
| rect->pt1.x = line.pt1.x - (linewidth >> 1); |
| rect->pt2.x = rect->pt1.x + linewidth - 1; |
| |
| ginfo("Vertical rect: (%d,%d),(%d,%d)\n", |
| rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y); |
| |
| return 2; |
| } |
| |
| /* The final degenerate case */ |
| |
| if (linewidth == 1 && |
| abs(line.pt2.x - line.pt1.x) < (line.pt2.y - line.pt1.y)) |
| { |
| /* A close to vertical line of width 1 is basically |
| * a single parallelogram of width 1. |
| */ |
| |
| traps[1].top.x1 = itob16(line.pt1.x); |
| traps[1].top.x2 = traps[1].top.x1; |
| traps[1].top.y = line.pt1.y; |
| |
| traps[1].bot.x1 = itob16(line.pt2.x); |
| traps[1].bot.x2 = traps[1].bot.x1; |
| traps[1].bot.y = line.pt2.y; |
| |
| ginfo("Vertical traps[1]: (%08" PRIx32 ",%08" PRIx32 ",%d)," |
| "(%08" PRIx32 ",%08" PRIx32 ", %d)\n", |
| traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
| traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
| |
| return 1; |
| } |
| else if (linewidth == 1) |
| { |
| b16_t pixels_per_row; |
| |
| /* Close to horizontal line of width 1 */ |
| |
| pixels_per_row = itob16(line.pt2.x - line.pt1.x) / |
| (line.pt2.y - line.pt1.y); |
| |
| traps[1].top.x1 = itob16(line.pt1.x); |
| traps[1].top.x2 = traps[1].top.x1 + pixels_per_row; |
| traps[1].top.y = line.pt1.y; |
| |
| traps[1].bot.x2 = itob16(line.pt2.x); |
| traps[1].bot.x1 = traps[1].bot.x2 - pixels_per_row; |
| traps[1].bot.y = line.pt2.y; |
| |
| if (pixels_per_row < 0) |
| { |
| b16_t tmp; |
| |
| tmp = traps[1].top.x2; |
| traps[1].top.x2 = traps[1].top.x1; |
| traps[1].top.x1 = tmp; |
| |
| tmp = traps[1].bot.x2; |
| traps[1].bot.x2 = traps[1].bot.x1; |
| traps[1].bot.x1 = tmp; |
| } |
| |
| ginfo("Horizontal traps[1]: (%08" PRIx32 ",%08" PRIx32 ",%d)," |
| "(%08" PRIx32 ",%08" PRIx32 ", %d)\n", |
| traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
| traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
| |
| return 1; |
| } |
| |
| /* Okay, then what remains is interesting. |
| * |
| * iheight = |y2 - y1| |
| * iwidth = |x2 - x1| |
| */ |
| |
| iheight = line.pt2.y - line.pt1.y + 1; |
| if (line.pt1.x < line.pt2.x) |
| { |
| iwidth = line.pt2.x - line.pt1.x + 1; |
| } |
| else |
| { |
| iwidth = line.pt1.x - line.pt2.x + 1; |
| } |
| |
| /* Applying the line width to the line results in a rotated, rectangle. |
| * Get the Y offset from an end of the original thin line to a corner of |
| * the fat line. |
| * |
| * Angle of line: angle = atan2(iheight, iwidth) |
| * Y offset from line: b16yoffset = linewidth * cos(angle) |
| * |
| * For near verical lines, b16yoffset is be nearly zero. For near |
| * horizontal lines, b16yOffset is be about the same as linewidth. |
| */ |
| |
| angle = b16atan2(itob16(iheight), itob16(iwidth)); |
| cosangle = b16cos(angle); |
| b16yoffset = (linewidth * cosangle + 1) >> 1; |
| |
| /* Get the X offset from an end of the original thin line to a corner of |
| * the fat line. |
| * |
| * For near vertical lines, b16xoffset is about the same as linewidth. |
| * For near horizontal lines, b16xoffset is nearly zero. |
| */ |
| |
| sinangle = b16sin(angle); |
| b16xoffset = (linewidth * sinangle + 1) >> 1; |
| |
| ginfo("height: %d width: %d angle: %08" PRIx32 " " |
| "b16yoffset: %08" PRIx32 " b16xoffset: %08" PRIx32 "\n", |
| iheight, iwidth, angle, b16yoffset, b16xoffset); |
| |
| /* Now we know all four points of the rotated rectangle */ |
| |
| iyoffset = b16toi(b16yoffset + b16HALF); |
| if (iyoffset > 0) |
| { |
| /* Get the Y positions of each point */ |
| |
| b16y = itob16(line.pt1.y); |
| quad[0].y = b16y - b16yoffset; |
| quad[1].y = b16y + b16yoffset; |
| |
| b16y = itob16(line.pt2.y); |
| quad[2].y = b16y - b16yoffset; |
| quad[3].y = b16y + b16yoffset; |
| |
| if (line.pt1.x < line.pt2.x) |
| { |
| /* Line is going "south east". Get the X positions of each point */ |
| |
| b16x = itob16(line.pt1.x); |
| quad[0].x = b16x + b16xoffset; |
| quad[1].x = b16x - b16xoffset; |
| |
| b16x = itob16(line.pt2.x); |
| quad[2].x = b16x + b16xoffset; |
| quad[3].x = b16x - b16xoffset; |
| |
| ginfo("Southeast: quad (%08" PRIx32 ",%08" PRIx32 ")," |
| "(%08" PRIx32 ",%08" PRIx32 ")," |
| "(%08" PRIx32 ",%08" PRIx32 ")," |
| "(%08" PRIx32 ",%08" PRIx32 ")\n", |
| quad[0].x, quad[0].y, quad[1].x, quad[1].y, |
| quad[2].x, quad[2].y, quad[3].x, quad[3].y); |
| |
| /* Now we can form the trapezoids. The top of the first trapezoid |
| * (triangle) is at quad[0] |
| */ |
| |
| traps[0].top.x1 = quad[0].x; |
| traps[0].top.x2 = quad[0].x; |
| traps[0].top.y = b16toi(quad[0].y + b16HALF); |
| |
| /* The bottom of the first trapezoid (triangle) may be either at |
| * quad[1] or quad[2], depending upon orientation. |
| */ |
| |
| if (quad[1]. y < quad[2].y) |
| { |
| /* quad[1] is at the bottom left of the triangle. Interpolate |
| * to get the corresponding point on the right side. |
| * |
| * Interpolation is from quad[0] along the line |
| * quad[0]->quad[2] which as the same slope as the line |
| * (positive) |
| */ |
| |
| b16dxdy = itob16(iwidth) / iheight; |
| |
| traps[0].bot.x1 = quad[1].x; |
| traps[0].bot.x2 = nxgl_interpolate(quad[0].x, |
| quad[1].y - quad[0].y, |
| b16dxdy); |
| traps[0].bot.y = b16toi(quad[1].y + b16HALF); |
| |
| /* quad[1] is at the top left of the second trapezoid. |
| * quad[2} is at the bottom right of the second trapezoid. |
| * Interpolate to get corresponding point on the left side. |
| * |
| * Interpolation is from quad[1] along the line |
| * quad[1]->quad[3] which as the same slope as the line |
| * (positive) |
| */ |
| |
| traps[1].top.x1 = traps[0].bot.x1; |
| traps[1].top.x2 = traps[0].bot.x2; |
| traps[1].top.y = traps[0].bot.y; |
| |
| traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, |
| quad[2].y - quad[1].y, |
| b16dxdy); |
| traps[1].bot.x2 = quad[2].x; |
| traps[1].bot.y = b16toi(quad[2].y + b16HALF); |
| } |
| else |
| { |
| /* quad[2] is at the bottom right of the triangle. Interpolate |
| * to get the corresponding point on the left side. |
| * |
| * Interpolation is from quad[0] along the line |
| * quad[0]->quad[1] which orthogonal to the slope of the line |
| * (and negative) |
| */ |
| |
| b16dxdy = -itob16(iheight) / iwidth; |
| |
| traps[0].bot.x1 = nxgl_interpolate(quad[0].x, |
| quad[2].y - quad[0].y, |
| b16dxdy); |
| traps[0].bot.x2 = quad[2].x; |
| traps[0].bot.y = b16toi(quad[2].y + b16HALF); |
| |
| /* quad[2] is at the top right of the second trapezoid. |
| * quad[1} is at the bottom left of the second trapezoid. |
| * Interpolate to get corresponding point on the right side. |
| * |
| * Interpolation is from quad[2] along the line |
| * quad[2]->quad[3] which as the same slope as the previous |
| * interpolation. |
| */ |
| |
| traps[1].top.x1 = traps[0].bot.x1; |
| traps[1].top.x2 = traps[0].bot.x2; |
| traps[1].top.y = traps[0].bot.y; |
| |
| traps[1].bot.x1 = quad[1].x; |
| traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, |
| quad[1].y - quad[2].y, |
| b16dxdy); |
| traps[1].bot.y = b16toi(quad[1].y + b16HALF); |
| } |
| |
| /* The final trapezond (triangle) at the bottom is new well |
| * defined |
| */ |
| |
| traps[2].top.x1 = traps[1].bot.x1; |
| traps[2].top.x2 = traps[1].bot.x2; |
| traps[2].top.y = traps[1].bot.y; |
| |
| traps[2].bot.x1 = quad[3].x; |
| traps[2].bot.x2 = quad[3].x; |
| traps[2].bot.y = b16toi(quad[3].y + b16HALF); |
| } |
| else |
| { |
| /* Get the X positions of each point */ |
| |
| b16x = itob16(line.pt1.x); |
| quad[0].x = b16x - b16xoffset; |
| quad[1].x = b16x + b16xoffset; |
| |
| b16x = itob16(line.pt2.x); |
| quad[2].x = b16x - b16xoffset; |
| quad[3].x = b16x + b16xoffset; |
| |
| ginfo("Southwest: quad (%08" PRIx32 ",%08" PRIx32 ")," |
| "(%08" PRIx32 ",%08" PRIx32 ")," |
| "(%08" PRIx32 ",%08" PRIx32 ")," |
| "(%08" PRIx32 ",%08" PRIx32 ")\n", |
| quad[0].x, quad[0].y, quad[1].x, quad[1].y, |
| quad[2].x, quad[2].y, quad[3].x, quad[3].y); |
| |
| /* Now we can form the trapezoids. The top of the first trapezoid |
| * (triangle) is at quad[0] |
| */ |
| |
| traps[0].top.x1 = quad[0].x; |
| traps[0].top.x2 = quad[0].x; |
| traps[0].top.y = b16toi(quad[0].y + b16HALF); |
| |
| /* The bottom of the first trapezoid (triangle) may be either at |
| * quad[1] or quad[2], depending upon orientation. |
| */ |
| |
| if (quad[1].y < quad[2].y) |
| { |
| /* quad[1] is at the bottom right of the triangle. Interpolate |
| * to get the corresponding point on the left side. |
| * |
| * Interpolation is from quad[0] along the line |
| * quad[0]->quad[2] which as the same slope as the line |
| * (negative) |
| */ |
| |
| b16dxdy = -itob16(iwidth) / iheight; |
| |
| traps[0].bot.x1 = nxgl_interpolate(traps[0].top.x1, |
| quad[1].y - quad[0].y, |
| b16dxdy); |
| traps[0].bot.x2 = quad[1].x; |
| traps[0].bot.y = b16toi(quad[1].y + b16HALF); |
| |
| /* quad[1] is at the top right of the second trapezoid. |
| * quad[2} is at the bottom left of the second trapezoid. |
| * Interpolate to get corresponding point on the right side. |
| * |
| * Interpolation is from quad[1] along the line |
| * quad[1]->quad[3] which as the same slope as the line |
| * (negative) |
| */ |
| |
| traps[1].top.x1 = traps[0].bot.x1; |
| traps[1].top.x2 = traps[0].bot.x2; |
| traps[1].top.y = traps[0].bot.y; |
| |
| traps[1].bot.x1 = quad[2].x; |
| traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, |
| quad[2].y - quad[1].y, |
| b16dxdy); |
| traps[1].bot.y = b16toi(quad[2].y + b16HALF); |
| } |
| else |
| { |
| /* quad[2] is at the bottom left of the triangle. Interpolate |
| * to get the corresponding point on the right side. |
| * |
| * Interpolation is from quad[0] along the line |
| * quad[0]->quad[1] which orthogonal to the slope of the line |
| * (and positive) |
| */ |
| |
| b16dxdy = itob16(iheight) / iwidth; |
| |
| traps[0].bot.x1 = quad[2].x; |
| traps[0].bot.x2 = nxgl_interpolate(traps[0].top.x2, |
| quad[2].y - quad[0].y, |
| b16dxdy); |
| traps[0].bot.y = b16toi(quad[2].y + b16HALF); |
| |
| /* quad[2] is at the top left of the second trapezoid. |
| * quad[1} is at the bottom right of the second trapezoid. |
| * Interpolate to get corresponding point on the left side. |
| * |
| * Interpolation is from quad[2] along the line |
| * quad[2]->quad[3] which as the same slope as the previous |
| * interpolation. |
| */ |
| |
| traps[1].top.x1 = traps[0].bot.x1; |
| traps[1].top.x2 = traps[0].bot.x2; |
| traps[1].top.y = traps[0].bot.y; |
| |
| traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, |
| quad[1].y - quad[2].y, |
| b16dxdy); |
| traps[1].bot.x2 = quad[1].x; |
| traps[1].bot.y = b16toi(quad[1].y + b16HALF); |
| } |
| |
| /* The final trapezond (triangle) at the bottom is new well |
| * defined |
| */ |
| |
| traps[2].top.x1 = traps[1].bot.x1; |
| traps[2].top.x2 = traps[1].bot.x2; |
| traps[2].top.y = traps[1].bot.y; |
| |
| traps[2].bot.x1 = quad[3].x; |
| traps[2].bot.x2 = quad[3].x; |
| traps[2].bot.y = b16toi(quad[3].y + b16HALF); |
| } |
| |
| ginfo("traps[0]: (%08" PRIx32 ",%08" PRIx32 ",%d)," |
| "(%08" PRIx32 ",%08" PRIx32 ",%d)\n", |
| traps[0].top.x1, traps[0].top.x2, traps[0].top.y, |
| traps[0].bot.x1, traps[0].bot.x2, traps[0].bot.y); |
| ginfo("traps[1]: (%08" PRIx32 ",%08" PRIx32 ",%d)," |
| "(%08" PRIx32 ",%08" PRIx32 ",%d)\n", |
| traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
| traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
| ginfo("traps[2]: (%08" PRIx32 ",%08" PRIx32 ",%d)," |
| "(%08" PRIx32 ",%08" PRIx32 ",%d)\n", |
| traps[2].top.x1, traps[2].top.x2, traps[2].top.y, |
| traps[2].bot.x1, traps[2].bot.x2, traps[2].bot.y); |
| |
| return 0; |
| } |
| |
| /* The line is too vertical to have any significant triangular top or |
| * bottom. Just return the center parallelogram. |
| */ |
| |
| traps[1].top.x1 = itob16(line.pt1.x - (linewidth >> 1)); |
| traps[1].top.x2 = traps[1].top.x1 + itob16(linewidth - 1); |
| traps[1].top.y = line.pt1.y; |
| |
| traps[1].bot.x1 = itob16(line.pt2.x - (linewidth >> 1)); |
| traps[1].bot.x2 = traps[1].bot.x1 + itob16(linewidth - 1); |
| traps[1].bot.y = line.pt2.y; |
| |
| ginfo("Horizontal traps[1]: (%08" PRIx32 ",%08" PRIx32 ",%d)," |
| "(%08" PRIx32 ",%08" PRIx32 ", %d)\n", |
| traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
| traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
| |
| return 1; |
| } |