blob: 011ac8536f4f18cf295cb3e8c953027c2a305739 [file] [log] [blame]
/****************************************************************************
* arch/arm/src/stm32/stm32l15xx_flash.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* Provides standard flash access functions, to be used by the
* flash mtd driver.
* The interface is defined in the include/nuttx/progmem.h
*
* Requirements during write/erase operations on FLASH:
* - HSI must be ON.
* - Low Power Modes are not permitted during write/erase
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/arch.h>
#include <nuttx/mutex.h>
#include <inttypes.h>
#include <stdbool.h>
#include <assert.h>
#include <debug.h>
#include <errno.h>
#include "stm32_flash.h"
#include "stm32_rcc.h"
#include "stm32_waste.h"
#include "arm_internal.h"
/* Only for the STM32L15xx family. */
#if defined(CONFIG_STM32_STM32L15XX)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#define FLASH_KEY1 0x8c9daebf
#define FLASH_KEY2 0x13141516
#define FLASH_OPTKEY1 0xfbead9c8
#define FLASH_OPTKEY2 0x24252627
#define EEPROM_KEY1 0x89abcdef
#define EEPROM_KEY2 0x02030405
#define FLASH_SR_WRITE_PROTECTION_ERROR FLASH_SR_WRPERR
#define FLASH_SR_ALLERRS (FLASH_SR_RDERR | FLASH_SR_SIZERR | \
FLASH_SR_PGAERR | FLASH_SR_WRPERR)
/* STM32L1 internal flash is based on EEPROM-technology while most others
* are NOR-flash, thus many things are different including the erase value.
*/
#define FLASH_ERASEDVALUE 0x00
/****************************************************************************
* Private Data
****************************************************************************/
static mutex_t g_lock = NXMUTEX_INITIALIZER;
/****************************************************************************
* Private Functions
****************************************************************************/
static void stm32_eeprom_unlock(void)
{
while (getreg32(STM32_FLASH_SR) & FLASH_SR_BSY)
{
stm32_waste();
}
if (getreg32(STM32_FLASH_PECR) & FLASH_PECR_PELOCK)
{
/* Unlock sequence */
putreg32(EEPROM_KEY1, STM32_FLASH_PEKEYR);
putreg32(EEPROM_KEY2, STM32_FLASH_PEKEYR);
}
}
static void stm32_eeprom_lock(void)
{
modifyreg32(STM32_FLASH_PECR, 0, FLASH_PECR_PELOCK);
}
static void flash_unlock(void)
{
if (getreg32(STM32_FLASH_PECR) & FLASH_PECR_PRGLOCK)
{
stm32_eeprom_unlock();
/* Unlock sequence */
putreg32(FLASH_KEY1, STM32_FLASH_PRGKEYR);
putreg32(FLASH_KEY2, STM32_FLASH_PRGKEYR);
}
}
static void flash_lock(void)
{
modifyreg32(STM32_FLASH_PECR, 0, FLASH_PECR_PRGLOCK);
stm32_eeprom_lock();
}
static ssize_t stm32_eeprom_erase_write(size_t addr, const void *buf,
size_t buflen)
{
const char *cbuf = buf;
size_t i;
if (buflen == 0)
{
return 0;
}
/* Check for valid address range */
if (addr >= STM32_EEPROM_BASE)
{
addr -= STM32_EEPROM_BASE;
}
if (addr >= STM32_EEPROM_SIZE)
{
return -EINVAL;
}
/* TODO: Voltage range must be range 1 or 2. Erase/program not allowed in
* range 3.
*/
stm32_eeprom_unlock();
/* Clear pending status flags. */
putreg32(FLASH_SR_WRPERR | FLASH_SR_PGAERR |
FLASH_SR_SIZERR | FLASH_SR_OPTVERR |
FLASH_SR_OPTVERRUSR | FLASH_SR_RDERR, STM32_FLASH_SR);
/* Enable automatic erasing (by disabling 'fixed time' programming). */
modifyreg32(STM32_FLASH_PECR, FLASH_PECR_FTDW, 0);
/* Write buffer to EEPROM data memory. */
addr += STM32_EEPROM_BASE;
i = 0;
while (i < buflen)
{
uint32_t writeval;
size_t left = buflen - i;
if ((addr & 0x03) == 0x00 && left >= 4)
{
/* Read/erase/write word */
writeval = cbuf ? *(uint32_t *)cbuf : 0;
putreg32(writeval, addr);
}
else if ((addr & 0x01) == 0x00 && left >= 2)
{
/* Read/erase/write half-word */
writeval = cbuf ? *(uint16_t *)cbuf : 0;
putreg16(writeval, addr);
}
else
{
/* Read/erase/write byte */
writeval = cbuf ? *(uint8_t *)cbuf : 0;
putreg8(writeval, addr);
}
/* ... and wait to complete. */
while (getreg32(STM32_FLASH_SR) & FLASH_SR_BSY)
{
stm32_waste();
}
/* Verify */
/* We do not check Options Byte invalid flags FLASH_SR_OPTVERR
* and FLASH_SR_OPTVERRUSR for EEPROM erase/write. They are unrelated
* and STM32L standard library does not check for these either.
*/
if (getreg32(STM32_FLASH_SR) & (FLASH_SR_WRPERR | FLASH_SR_PGAERR |
FLASH_SR_SIZERR | FLASH_SR_RDERR))
{
stm32_eeprom_lock();
return -EROFS;
}
if ((addr & 0x03) == 0x00 && left >= 4)
{
if (getreg32(addr) != writeval)
{
stm32_eeprom_lock();
return -EIO;
}
addr += 4;
i += 4;
cbuf += !!(cbuf) * 4;
}
else if ((addr & 0x01) == 0x00 && left >= 2)
{
if (getreg16(addr) != writeval)
{
stm32_eeprom_lock();
return -EIO;
}
addr += 2;
i += 2;
cbuf += !!(cbuf) * 2;
}
else
{
if (getreg8(addr) != writeval)
{
stm32_eeprom_lock();
return -EIO;
}
addr += 1;
i += 1;
cbuf += !!(cbuf) * 1;
}
}
stm32_eeprom_lock();
return buflen;
}
/****************************************************************************
* Public Functions
****************************************************************************/
int stm32_flash_unlock(void)
{
int ret;
ret = nxmutex_lock(&g_lock);
if (ret < 0)
{
return ret;
}
flash_unlock();
nxmutex_unlock(&g_lock);
return ret;
}
int stm32_flash_lock(void)
{
int ret;
ret = nxmutex_lock(&g_lock);
if (ret < 0)
{
return ret;
}
flash_lock();
nxmutex_unlock(&g_lock);
return ret;
}
size_t stm32_eeprom_size(void)
{
return STM32_EEPROM_SIZE;
}
size_t stm32_eeprom_getaddress(void)
{
return STM32_EEPROM_BASE;
}
ssize_t stm32_eeprom_write(size_t addr, const void *buf, size_t buflen)
{
ssize_t outlen;
int ret;
if (!buf)
{
return -EINVAL;
}
ret = nxmutex_lock(&g_lock);
if (ret < 0)
{
return (ssize_t)ret;
}
outlen = stm32_eeprom_erase_write(addr, buf, buflen);
nxmutex_unlock(&g_lock);
return outlen;
}
ssize_t stm32_eeprom_erase(size_t addr, size_t eraselen)
{
ssize_t outlen;
int ret;
ret = nxmutex_lock(&g_lock);
if (ret < 0)
{
return (ssize_t)ret;
}
outlen = stm32_eeprom_erase_write(addr, NULL, eraselen);
nxmutex_unlock(&g_lock);
return outlen;
}
size_t up_progmem_pagesize(size_t page)
{
return STM32_FLASH_PAGESIZE;
}
size_t up_progmem_erasesize(size_t block)
{
return STM32_FLASH_PAGESIZE;
}
ssize_t up_progmem_getpage(size_t addr)
{
if (addr >= STM32_FLASH_BASE)
{
addr -= STM32_FLASH_BASE;
}
if (addr >= STM32_FLASH_SIZE)
{
return -EFAULT;
}
return addr / STM32_FLASH_PAGESIZE;
}
size_t up_progmem_getaddress(size_t page)
{
if (page >= STM32_FLASH_NPAGES)
{
return SIZE_MAX;
}
return page * STM32_FLASH_PAGESIZE + STM32_FLASH_BASE;
}
size_t up_progmem_neraseblocks(void)
{
return STM32_FLASH_NPAGES;
}
bool up_progmem_isuniform(void)
{
#ifdef STM32_FLASH_PAGESIZE
return true;
#else
return false;
#endif
}
ssize_t up_progmem_ispageerased(size_t page)
{
size_t addr;
size_t count;
size_t bwritten = 0;
if (page >= STM32_FLASH_NPAGES)
{
return -EFAULT;
}
/* Verify */
for (addr = up_progmem_getaddress(page), count = up_progmem_pagesize(page);
count; count--, addr++)
{
if (getreg8(addr) != FLASH_ERASEDVALUE)
{
bwritten++;
}
}
return bwritten;
}
ssize_t up_progmem_eraseblock(size_t block)
{
size_t page_address;
int ret;
if (block >= STM32_FLASH_NPAGES)
{
return -EFAULT;
}
page_address = up_progmem_getaddress(block);
/* Get flash ready and begin erasing single page */
ret = nxmutex_lock(&g_lock);
if (ret < 0)
{
return (ssize_t)ret;
}
flash_unlock();
modifyreg32(STM32_FLASH_PECR, 0, FLASH_PECR_ERASE);
modifyreg32(STM32_FLASH_PECR, 0, FLASH_PECR_PROG);
/* Erase is started by writing 0x00000000 to the first word
* of the program page.
*/
putreg32(0x00, page_address);
while (getreg32(STM32_FLASH_SR) & FLASH_SR_BSY)
{
stm32_waste();
}
flash_lock();
nxmutex_unlock(&g_lock);
/* Verify */
if (up_progmem_ispageerased(block) == 0)
{
return up_progmem_erasesize(block);
}
else
{
return -EIO;
}
}
ssize_t up_progmem_write(size_t addr, const void *buf, size_t count)
{
uint32_t *word = (uint32_t *)buf;
size_t written = count;
int ret = OK;
/* STM32L1 requires word access and alignment. */
if (addr & 3)
{
return -EINVAL;
}
if (count & 3)
{
return -EINVAL;
}
/* Check for valid address range */
if (addr >= STM32_FLASH_BASE)
{
addr -= STM32_FLASH_BASE;
}
if ((addr + count) > STM32_FLASH_SIZE)
{
return -EFAULT;
}
/* Get flash ready and begin flashing */
ret = nxmutex_lock(&g_lock);
if (ret < 0)
{
return (ssize_t)ret;
}
flash_unlock();
for (addr += STM32_FLASH_BASE; count; count -= 4, word++, addr += 4)
{
/* Write word and wait to complete */
putreg32(*word, addr);
while (getreg32(STM32_FLASH_SR) & FLASH_SR_BSY)
{
stm32_waste();
}
/* Verify */
if (getreg32(STM32_FLASH_SR) & FLASH_SR_WRITE_PROTECTION_ERROR)
{
ret = -EROFS;
goto out;
}
if (getreg32(addr) != *word)
{
ret = -EIO;
goto out;
}
}
out:
/* If there was an error, clear all error flags in status
* register (rc_w1 register so do this by writing the
* error bits).
*/
if (ret != OK)
{
ferr("flash write error: %d, status: 0x%" PRIx32 "\n",
ret, getreg32(STM32_FLASH_SR));
modifyreg32(STM32_FLASH_SR, 0, FLASH_SR_ALLERRS);
}
flash_lock();
nxmutex_unlock(&g_lock);
return (ret == OK) ? written : ret;
}
uint8_t up_progmem_erasestate(void)
{
return FLASH_ERASEDVALUE;
}
#endif /* defined(CONFIG_STM32_STM32L15XX) */