blob: 09baf13faec778535c435d8b5f5038579cc764d9 [file] [log] [blame]
/****************************************************************************
* arch/arm/src/stm32h7/stm32_tickless.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Tickless OS Support.
*
* When CONFIG_SCHED_TICKLESS is enabled, all support for timer interrupts
* is suppressed and the platform specific code is expected to provide the
* following custom functions.
*
* void up_timer_initialize(void): Initializes the timer facilities.
* Called early in the initialization sequence (by up_initialize()).
* int up_timer_gettime(struct timespec *ts): Returns the current
* time from the platform specific time source.
* int up_timer_cancel(void): Cancels the interval timer.
* int up_timer_start(const struct timespec *ts): Start (or re-starts)
* the interval timer.
*
* The RTOS will provide the following interfaces for use by the platform-
* specific interval timer implementation:
*
* void nxsched_timer_expiration(void): Called by the platform-specific
* logic when the interval timer expires.
*
****************************************************************************/
/****************************************************************************
* STM32 Timer Usage
*
* This implementation uses one timer: A free running timer to provide
* the current time and a capture/compare channel for timed-events.
*
* BASIC timers that are found on some STM32 chips (timers 6 and 7) are
* incompatible with this implementation because they don't have capture/
* compare channels. There are two interrupts generated from our timer,
* the overflow interrupt which drives the timing handler and the capture/
* compare interrupt which drives the interval handler. There are some low
* level timer control functions implemented here because the API of
* stm32_tim.c does not provide adequate control over capture/compare
* interrupts.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <stdbool.h>
#include <errno.h>
#include <assert.h>
#include <nuttx/arch.h>
#include <nuttx/timers/arch_timer.h>
#include <debug.h>
#include <arch/board/board.h>
#include "arm_internal.h"
#include "stm32_tim.h"
#include "stm32_dbgmcu.h"
#include "systick.h"
#ifdef CONFIG_SCHED_TICKLESS
/* Only TIM2 and TIM5 timers may be 32-bits in width */
#undef HAVE_32BIT_TICKLESS
#if (CONFIG_STM32H7_TICKLESS_TIMER == 2) || \
(CONFIG_STM32H7_TICKLESS_TIMER == 5)
#define HAVE_32BIT_TICKLESS 1
#endif
#if (CONFIG_STM32H7_TICKLESS_TIMER == 6) || \
(CONFIG_STM32H7_TICKLESS_TIMER == 7)
# error Basic timers not supported by the tickless driver
#endif
#if CONFIG_STM32H7_TICKLESS_CHANNEL == 1
#define DIER_CAPT_IE GTIM_DIER_CC1IE
#elif CONFIG_STM32H7_TICKLESS_CHANNEL == 2
#define DIER_CAPT_IE GTIM_DIER_CC2IE
#elif CONFIG_STM32H7_TICKLESS_CHANNEL == 3
#define DIER_CAPT_IE GTIM_DIER_CC3IE
#elif CONFIG_STM32H7_TICKLESS_CHANNEL == 4
#define DIER_CAPT_IE GTIM_DIER_CC4IE
#endif
/****************************************************************************
* Private Types
****************************************************************************/
struct stm32_tickless_s
{
uint8_t timer; /* The timer/counter in use */
uint8_t channel; /* The timer channel to use for intervals */
struct stm32_tim_dev_s *tch; /* Handle returned by stm32_tim_init() */
uint32_t frequency;
uint32_t overflow; /* Timer counter overflow */
volatile bool pending; /* True: pending task */
uint32_t period; /* Interval period */
uint32_t base;
#ifdef CONFIG_SCHED_TICKLESS_ALARM
uint64_t last_alrm;
#endif
};
/****************************************************************************
* Private Data
****************************************************************************/
static struct stm32_tickless_s g_tickless;
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: stm32_getreg16
*
* Description:
* Get a 16-bit register value by offset
*
****************************************************************************/
static inline uint16_t stm32_getreg16(uint8_t offset)
{
return getreg16(g_tickless.base + offset);
}
/****************************************************************************
* Name: stm32_putreg16
*
* Description:
* Put a 16-bit register value by offset
*
****************************************************************************/
static inline void stm32_putreg16(uint8_t offset, uint16_t value)
{
putreg16(value, g_tickless.base + offset);
}
/****************************************************************************
* Name: stm32_modifyreg16
*
* Description:
* Modify a 16-bit register value by offset
*
****************************************************************************/
static inline void stm32_modifyreg16(uint8_t offset, uint16_t clearbits,
uint16_t setbits)
{
modifyreg16(g_tickless.base + offset, clearbits, setbits);
}
/****************************************************************************
* Name: stm32_tickless_enableint
****************************************************************************/
static inline void stm32_tickless_enableint(int channel)
{
stm32_modifyreg16(STM32_BTIM_DIER_OFFSET, 0, 1 << channel);
}
/****************************************************************************
* Name: stm32_tickless_disableint
****************************************************************************/
static inline void stm32_tickless_disableint(int channel)
{
stm32_modifyreg16(STM32_BTIM_DIER_OFFSET, 1 << channel, 0);
}
/****************************************************************************
* Name: stm32_tickless_ackint
****************************************************************************/
static inline void stm32_tickless_ackint(int channel)
{
stm32_putreg16(STM32_BTIM_SR_OFFSET, ~(1 << channel));
}
/****************************************************************************
* Name: stm32_tickless_getint
****************************************************************************/
static inline uint16_t stm32_tickless_getint(void)
{
return stm32_getreg16(STM32_BTIM_SR_OFFSET);
}
/****************************************************************************
* Name: stm32_tickless_setchannel
****************************************************************************/
static int stm32_tickless_setchannel(uint8_t channel)
{
uint16_t ccmr_orig = 0;
uint16_t ccmr_val = 0;
uint16_t ccmr_mask = 0xff;
uint16_t ccer_val = stm32_getreg16(STM32_GTIM_CCER_OFFSET);
uint8_t ccmr_offset = STM32_GTIM_CCMR1_OFFSET;
/* Further we use range as 0..3; if channel=0 it will also overflow here */
if (--channel > 4)
{
return -EINVAL;
}
/* Assume that channel is disabled and polarity is active high */
ccer_val &= ~((GTIM_CCER_CC1P | GTIM_CCER_CC1E) <<
GTIM_CCER_CCXBASE(channel));
/* This function is not supported on basic timers. To enable or
* disable it, simply set its clock to valid frequency or zero.
*/
if (g_tickless.base == STM32_TIM6_BASE ||
g_tickless.base == STM32_TIM7_BASE)
{
return -EINVAL;
}
/* Frozen mode because we don't want to change the GPIO, preload register
* disabled.
*/
ccmr_val = (GTIM_CCMR_MODE_FRZN << GTIM_CCMR1_OC1M_SHIFT);
/* Set polarity */
ccer_val |= GTIM_CCER_CC1P << GTIM_CCER_CCXBASE(channel);
/* Define its position (shift) and get register offset */
if ((channel & 1) != 0)
{
ccmr_val <<= 8;
ccmr_mask <<= 8;
}
if (channel > 1)
{
ccmr_offset = STM32_GTIM_CCMR2_OFFSET;
}
ccmr_orig = stm32_getreg16(ccmr_offset);
ccmr_orig &= ~ccmr_mask;
ccmr_orig |= ccmr_val;
stm32_putreg16(ccmr_offset, ccmr_orig);
stm32_putreg16(STM32_GTIM_CCER_OFFSET, ccer_val);
return OK;
}
/****************************************************************************
* Name: stm32_interval_handler
*
* Description:
* Called when the timer counter matches the compare register
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
* Assumptions:
* Called early in the initialization sequence before any special
* concurrency protections are required.
*
****************************************************************************/
static void stm32_interval_handler(void)
{
#ifdef CONFIG_SCHED_TICKLESS_ALARM
struct timespec tv;
#endif
tmrinfo("Expired...\n");
/* Disable the compare interrupt now. */
stm32_tickless_disableint(g_tickless.channel);
stm32_tickless_ackint(g_tickless.channel);
g_tickless.pending = false;
#ifndef CONFIG_SCHED_TICKLESS_ALARM
nxsched_timer_expiration();
#else
up_timer_gettime(&tv);
nxsched_alarm_expiration(&tv);
#endif
}
/****************************************************************************
* Name: stm32_timing_handler
*
* Description:
* Timer interrupt callback. When the freerun timer counter overflows,
* this interrupt will occur. We will just increment an overflow count.
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
****************************************************************************/
static void stm32_timing_handler(void)
{
g_tickless.overflow++;
STM32_TIM_ACKINT(g_tickless.tch, GTIM_SR_UIF);
}
/****************************************************************************
* Name: stm32_tickless_handler
*
* Description:
* Generic interrupt handler for this timer. It checks the source of the
* interrupt and fires the appropriate handler.
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
****************************************************************************/
static int stm32_tickless_handler(int irq, void *context, void *arg)
{
int interrupt_flags = stm32_tickless_getint();
if (interrupt_flags & GTIM_SR_UIF)
{
stm32_timing_handler();
}
if (interrupt_flags & (1 << g_tickless.channel))
{
stm32_interval_handler();
}
return OK;
}
/****************************************************************************
* Name: stm32_get_counter
*
****************************************************************************/
static uint64_t stm32_get_counter(void)
{
#ifdef HAVE_32BIT_TICKLESS
return ((uint64_t)g_tickless.overflow << 32) |
STM32_TIM_GETCOUNTER(g_tickless.tch);
#else
return ((uint64_t)g_tickless.overflow << 16) |
STM32_TIM_GETCOUNTER(g_tickless.tch);
#endif
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: up_timer_initialize
*
* Description:
* Initializes all platform-specific timer facilities. This function is
* called early in the initialization sequence by up_initialize().
* On return, the current up-time should be available from
* up_timer_gettime() and the interval timer is ready for use (but not
* actively timing.
*
* Provided by platform-specific code and called from the architecture-
* specific logic.
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
* Assumptions:
* Called early in the initialization sequence before any special
* concurrency protections are required.
*
****************************************************************************/
void up_timer_initialize(void)
{
switch (CONFIG_STM32H7_TICKLESS_TIMER)
{
#ifdef CONFIG_STM32H7_TIM1
case 1:
g_tickless.base = STM32_TIM1_BASE;
modifyreg32(STM32_DBGMCU_APB2FZ1, 0, DBGMCU_APB2Z1_TIM1STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM2
case 2:
g_tickless.base = STM32_TIM2_BASE;
modifyreg32(STM32_DBGMCU_APB1LFZ1, 0, DBGMCU_APB1L_TIM2STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM3
case 3:
g_tickless.base = STM32_TIM3_BASE;
modifyreg32(STM32_DBGMCU_APB1LFZ1, 0, DBGMCU_APB1L_TIM3STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM4
case 4:
g_tickless.base = STM32_TIM4_BASE;
modifyreg32(STM32_DBGMCU_APB1LFZ1, 0, DBGMCU_APB1L_TIM4STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM5
case 5:
g_tickless.base = STM32_TIM5_BASE;
modifyreg32(STM32_DBGMCU_APB1LFZ1, 0, DBGMCU_APB1L_TIM5STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM8
case 8:
g_tickless.base = STM32_TIM8_BASE;
modifyreg32(STM32_DBGMCU_APB2FZ1, 0, DBGMCU_APB2Z1_TIM8STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM9
case 9:
g_tickless.base = STM32_TIM9_BASE;
/* A freeze bit for TIM9 doesn't seem to exist */
break;
#endif
#ifdef CONFIG_STM32H7_TIM10
case 10:
g_tickless.base = STM32_TIM10_BASE;
/* A freeze bit for TIM10 doesn't seem to exist */
break;
#endif
#ifdef CONFIG_STM32H7_TIM11
case 11:
g_tickless.base = STM32_TIM11_BASE;
/* A freeze bit for TIM11 doesn't seem to exist */
break;
#endif
#ifdef CONFIG_STM32H7_TIM12
case 12:
g_tickless.base = STM32_TIM12_BASE;
modifyreg32(STM32_DBGMCU_APB1LFZ1, 0, DBGMCU_APB1L_TIM12STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM13
case 13:
g_tickless.base = STM32_TIM13_BASE;
modifyreg32(STM32_DBGMCU_APB1LFZ1, 0, DBGMCU_APB1L_TIM13STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM14
case 14:
g_tickless.base = STM32_TIM14_BASE;
modifyreg32(STM32_DBGMCU_APB1LFZ1, 0, DBGMCU_APB1L_TIM14STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM15
case 15:
g_tickless.base = STM32_TIM15_BASE;
modifyreg32(STM32_DBGMCU_APB2FZ1, 0, DBGMCU_APB2Z1_TIM15STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM16
case 16:
g_tickless.base = STM32_TIM16_BASE;
modifyreg32(STM32_DBGMCU_APB2FZ1, 0, DBGMCU_APB2Z1_TIM16STOP);
break;
#endif
#ifdef CONFIG_STM32H7_TIM17
case 17:
g_tickless.base = STM32_TIM17_BASE;
modifyreg32(STM32_DBGMCU_APB2FZ1, 0, DBGMCU_APB2Z1_TIM17STOP);
break;
#endif
default:
DEBUGPANIC();
}
/* Get the TC frequency that corresponds to the requested resolution */
g_tickless.frequency = USEC_PER_SEC / (uint32_t)CONFIG_USEC_PER_TICK;
g_tickless.timer = CONFIG_STM32H7_TICKLESS_TIMER;
g_tickless.channel = CONFIG_STM32H7_TICKLESS_CHANNEL;
g_tickless.pending = false;
g_tickless.period = 0;
g_tickless.overflow = 0;
tmrinfo("timer=%d channel=%d frequency=%lu Hz\n",
g_tickless.timer, g_tickless.channel, g_tickless.frequency);
g_tickless.tch = stm32_tim_init(g_tickless.timer);
if (g_tickless.tch == NULL)
{
tmrerr("ERROR: Failed to allocate TIM%d\n", g_tickless.timer);
DEBUGPANIC();
}
STM32_TIM_SETCLOCK(g_tickless.tch, g_tickless.frequency);
/* Set up to receive the callback when the counter overflow occurs */
STM32_TIM_SETISR(g_tickless.tch, stm32_tickless_handler, NULL, 0);
/* Initialize interval to zero */
STM32_TIM_SETCOMPARE(g_tickless.tch, g_tickless.channel, 0);
/* Setup compare channel for the interval timing */
stm32_tickless_setchannel(g_tickless.channel);
/* Set timer period */
#ifdef HAVE_32BIT_TICKLESS
STM32_TIM_SETPERIOD(g_tickless.tch, UINT32_MAX);
#ifdef CONFIG_SCHED_TICKLESS_LIMIT_MAX_SLEEP
g_oneshot_maxticks = UINT32_MAX;
#endif
#else
STM32_TIM_SETPERIOD(g_tickless.tch, UINT16_MAX);
#ifdef CONFIG_SCHED_TICKLESS_LIMIT_MAX_SLEEP
g_oneshot_maxticks = UINT16_MAX;
#endif
#endif
/* Initialize the counter */
STM32_TIM_SETMODE(g_tickless.tch, STM32_TIM_MODE_UP);
/* Start the timer */
STM32_TIM_ACKINT(g_tickless.tch, ~0);
STM32_TIM_ENABLEINT(g_tickless.tch, 0);
#if defined(CONFIG_ARMV7M_SYSTICK) && defined(CONFIG_CPULOAD_PERIOD)
nxsched_period_extclk(systick_initialize(true,
STM32_CPUCLK_FREQUENCY, -1));
#endif
}
/****************************************************************************
* Name: up_timer_gettime
*
* Description:
* Return the elapsed time since power-up (or, more correctly, since
* up_timer_initialize() was called). This function is functionally
* equivalent to:
*
* int clock_gettime(clockid_t clockid, struct timespec *ts);
*
* when clockid is CLOCK_MONOTONIC.
*
* This function provides the basis for reporting the current time and
* also is used to eliminate error build-up from small errors in interval
* time calculations.
*
* Provided by platform-specific code and called from the RTOS base code.
*
* Input Parameters:
* ts - Provides the location in which to return the up-time.
*
* Returned Value:
* Zero (OK) is returned on success; a negated errno value is returned on
* any failure.
*
* Assumptions:
* Called from the normal tasking context. The implementation must
* provide whatever mutual exclusion is necessary for correct operation.
* This can include disabling interrupts in order to assure atomic register
* operations.
*
****************************************************************************/
int up_timer_gettime(struct timespec *ts)
{
uint64_t usec;
uint32_t counter;
uint32_t verify;
uint32_t overflow;
uint32_t sec;
int pending;
irqstate_t flags;
DEBUGASSERT(ts);
/* Timer not initialized yet, return zero */
if (g_tickless.tch == NULL)
{
ts->tv_nsec = 0;
ts->tv_sec = 0;
return OK;
}
/* Temporarily disable the overflow counter. NOTE that we have to be
* careful here because stm32_tc_getpending() will reset the pending
* interrupt status. If we do not handle the overflow here then, it will
* be lost.
*/
flags = enter_critical_section();
overflow = g_tickless.overflow;
counter = STM32_TIM_GETCOUNTER(g_tickless.tch);
pending = STM32_TIM_CHECKINT(g_tickless.tch, GTIM_SR_UIF);
verify = STM32_TIM_GETCOUNTER(g_tickless.tch);
/* If an interrupt was pending before we re-enabled interrupts,
* then the overflow needs to be incremented.
*/
if (pending)
{
STM32_TIM_ACKINT(g_tickless.tch, GTIM_SR_UIF);
/* Increment the overflow count and use the value of the
* guaranteed to be AFTER the overflow occurred.
*/
overflow++;
counter = verify;
/* Update tickless overflow counter. */
g_tickless.overflow = overflow;
}
leave_critical_section(flags);
tmrinfo("counter=%lu (%lu) overflow=%lu, pending=%i\n",
(unsigned long)counter, (unsigned long)verify,
(unsigned long)overflow, pending);
tmrinfo("frequency=%lu\n", g_tickless.frequency);
/* Convert the whole thing to units of microseconds.
*
* frequency = ticks / second
* seconds = ticks * frequency
* usecs = (ticks * USEC_PER_SEC) / frequency;
*/
#ifdef HAVE_32BIT_TICKLESS
usec = ((((uint64_t)overflow << 32) + (uint64_t)counter) * USEC_PER_SEC) /
g_tickless.frequency;
#else
usec = ((((uint64_t)overflow << 16) + (uint64_t)counter) * USEC_PER_SEC) /
g_tickless.frequency;
#endif
/* And return the value of the timer */
sec = (uint32_t)(usec / USEC_PER_SEC);
ts->tv_sec = sec;
ts->tv_nsec = (usec - (sec * USEC_PER_SEC)) * NSEC_PER_USEC;
tmrinfo("usec=%llu ts=(%lu, %lu)\n",
usec, (unsigned long)ts->tv_sec, (unsigned long)ts->tv_nsec);
return OK;
}
#ifdef CONFIG_CLOCK_TIMEKEEPING
/****************************************************************************
* Name: up_timer_gettick
*
* Description:
* To be provided
*
* Input Parameters:
* cycles - 64-bit return value
*
* Returned Value:
* None
*
****************************************************************************/
int up_timer_gettick(clock_t *ticks)
{
*ticks = (clock_t)STM32_TIM_GETCOUNTER(g_tickless.tch);
return OK;
}
/****************************************************************************
* Name: up_timer_getmask
*
* Description:
* To be provided
*
* Input Parameters:
* mask - Location to return the 64-bit mask
*
* Returned Value:
* None
*
****************************************************************************/
void up_timer_getmask(clock_t *mask)
{
DEBUGASSERT(mask != NULL);
#ifdef HAVE_32BIT_TICKLESS
*mask = UINT32_MAX;
#else
*mask = UINT16_MAX;
#endif
}
#endif /* CONFIG_CLOCK_TIMEKEEPING */
/****************************************************************************
* Name: up_timer_cancel
*
* Description:
* Cancel the interval timer and return the time remaining on the timer.
* These two steps need to be as nearly atomic as possible.
* nxsched_timer_expiration() will not be called unless the timer is
* restarted with up_timer_start().
*
* If, as a race condition, the timer has already expired when this
* function is called, then that pending interrupt must be cleared so
* that up_timer_start() and the remaining time of zero should be
* returned.
*
* NOTE: This function may execute at a high rate with no timer running (as
* when pre-emption is enabled and disabled).
*
* Provided by platform-specific code and called from the RTOS base code.
*
* Input Parameters:
* ts - Location to return the remaining time. Zero should be returned
* if the timer is not active. ts may be zero in which case the
* time remaining is not returned.
*
* Returned Value:
* Zero (OK) is returned on success. A call to up_timer_cancel() when
* the timer is not active should also return success; a negated errno
* value is returned on any failure.
*
* Assumptions:
* May be called from interrupt level handling or from the normal tasking
* level. Interrupts may need to be disabled internally to assure
* non-reentrancy.
*
****************************************************************************/
#ifndef CONFIG_SCHED_TICKLESS_ALARM
int up_timer_cancel(struct timespec *ts)
{
irqstate_t flags;
uint64_t usec;
uint64_t sec;
uint64_t nsec;
uint32_t count;
uint32_t period;
/* Was the timer running? */
flags = enter_critical_section();
if (!g_tickless.pending)
{
/* No.. Just return zero timer remaining and successful cancellation.
* This function may execute at a high rate with no timer running
* (as when pre-emption is enabled and disabled).
*/
if (ts != NULL)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
leave_critical_section(flags);
return OK;
}
/* Yes.. Get the timer counter and period registers and disable the compare
* interrupt.
*/
tmrinfo("Cancelling...\n");
/* Disable the interrupt. */
stm32_tickless_disableint(g_tickless.channel);
count = STM32_TIM_GETCOUNTER(g_tickless.tch);
period = g_tickless.period;
g_tickless.pending = false;
leave_critical_section(flags);
/* Did the caller provide us with a location to return the time
* remaining?
*/
if (ts != NULL)
{
/* Yes.. then calculate and return the time remaining on the
* oneshot timer.
*/
tmrinfo("period=%lu count=%lu\n",
(unsigned long)period, (unsigned long)count);
#ifndef HAVE_32BIT_TICKLESS
if (count > period)
{
/* Handle rollover */
period += UINT16_MAX;
}
else if (count == period)
#else
if (count >= period)
#endif
{
/* No time remaining */
ts->tv_sec = 0;
ts->tv_nsec = 0;
return OK;
}
/* The total time remaining is the difference. Convert that
* to units of microseconds.
*
* frequency = ticks / second
* seconds = ticks * frequency
* usecs = (ticks * USEC_PER_SEC) / frequency;
*/
usec = (((uint64_t)(period - count)) * USEC_PER_SEC) /
g_tickless.frequency;
/* Return the time remaining in the correct form */
sec = usec / USEC_PER_SEC;
nsec = ((usec) - (sec * USEC_PER_SEC)) * NSEC_PER_USEC;
ts->tv_sec = (time_t)sec;
ts->tv_nsec = (unsigned long)nsec;
tmrinfo("remaining (%lu, %lu)\n",
(unsigned long)ts->tv_sec, (unsigned long)ts->tv_nsec);
}
return OK;
}
#endif
/****************************************************************************
* Name: up_timer_start
*
* Description:
* Start the interval timer. nxsched_timer_expiration() will be
* called at the completion of the timeout (unless up_timer_cancel
* is called to stop the timing.
*
* Provided by platform-specific code and called from the RTOS base code.
*
* Input Parameters:
* ts - Provides the time interval until nxsched_timer_expiration() is
* called.
*
* Returned Value:
* Zero (OK) is returned on success; a negated errno value is returned on
* any failure.
*
* Assumptions:
* May be called from interrupt level handling or from the normal tasking
* level. Interrupts may need to be disabled internally to assure
* non-reentrancy.
*
****************************************************************************/
#ifndef CONFIG_SCHED_TICKLESS_ALARM
int up_timer_start(const struct timespec *ts)
{
uint64_t usec;
uint64_t period;
uint32_t count;
irqstate_t flags;
tmrinfo("ts=(%lu, %lu)\n",
(unsigned long)ts->tv_sec, (unsigned long)ts->tv_nsec);
DEBUGASSERT(ts);
DEBUGASSERT(g_tickless.tch);
/* Was an interval already running? */
flags = enter_critical_section();
if (g_tickless.pending)
{
/* Yes.. then cancel it */
tmrinfo("Already running... cancelling\n");
up_timer_cancel(NULL);
}
/* Express the delay in microseconds */
usec = (uint64_t)ts->tv_sec * USEC_PER_SEC +
(uint64_t)(ts->tv_nsec / NSEC_PER_USEC);
/* Get the timer counter frequency and determine the number of counts need
* to achieve the requested delay.
*
* frequency = ticks / second
* ticks = seconds * frequency
* = (usecs * frequency) / USEC_PER_SEC;
*/
period = (usec * (uint64_t)g_tickless.frequency) / USEC_PER_SEC;
count = STM32_TIM_GETCOUNTER(g_tickless.tch);
tmrinfo("usec=%llu period=%08llx\n", usec, period);
/* Set interval compare value. Rollover is fine,
* channel will trigger on the next period.
*/
#ifdef HAVE_32BIT_TICKLESS
DEBUGASSERT(period <= UINT32_MAX);
g_tickless.period = (uint32_t)(period + count);
#else
DEBUGASSERT(period <= UINT16_MAX);
g_tickless.period = (uint16_t)(period + count);
#endif
STM32_TIM_SETCOMPARE(g_tickless.tch, g_tickless.channel,
g_tickless.period);
/* Enable interrupts. We should get the callback when the interrupt
* occurs.
*/
stm32_tickless_ackint(g_tickless.channel);
stm32_tickless_enableint(g_tickless.channel);
g_tickless.pending = true;
leave_critical_section(flags);
return OK;
}
#endif
#ifdef CONFIG_SCHED_TICKLESS_ALARM
int up_alarm_start(const struct timespec *ts)
{
size_t offset = 1;
uint64_t tm = ((uint64_t)ts->tv_sec * NSEC_PER_SEC + ts->tv_nsec) /
NSEC_PER_TICK;
irqstate_t flags;
flags = enter_critical_section();
STM32_TIM_SETCOMPARE(g_tickless.tch, CONFIG_STM32H7_TICKLESS_CHANNEL, tm);
stm32_tickless_ackint(g_tickless.channel);
stm32_tickless_enableint(CONFIG_STM32H7_TICKLESS_CHANNEL);
g_tickless.pending = true;
/* If we have already passed this time, there is a chance we didn't set the
* compare register in time and we've missed the interrupt. If we don't
* catch this case, we won't interrupt until a full loop of the clock.
*
* Since we can't make assumptions about the clock speed and tick rate,
* we simply keep adding an offset to the current time, until we can leave
* certain that the interrupt is going to fire as soon as we leave the
* critical section.
*/
while (tm <= stm32_get_counter())
{
tm = stm32_get_counter() + offset++;
STM32_TIM_SETCOMPARE(g_tickless.tch, CONFIG_STM32H7_TICKLESS_CHANNEL,
tm);
}
leave_critical_section(flags);
return OK;
}
int up_alarm_cancel(struct timespec *ts)
{
#ifdef HAVE_32BIT_TICKLESS
uint64_t nsecs = (((uint64_t)g_tickless.overflow << 32) |
STM32_TIM_GETCOUNTER(g_tickless.tch)) * NSEC_PER_TICK;
#else
uint64_t nsecs = (((uint64_t)g_tickless.overflow << 16) |
STM32_TIM_GETCOUNTER(g_tickless.tch)) * NSEC_PER_TICK;
#endif
ts->tv_sec = nsecs / NSEC_PER_SEC;
ts->tv_nsec = nsecs - ts->tv_sec * NSEC_PER_SEC;
stm32_tickless_disableint(CONFIG_STM32H7_TICKLESS_CHANNEL);
return 0;
}
#endif
#endif /* CONFIG_SCHED_TICKLESS */