| /**************************************************************************** |
| * lib/lib_fixedmath.c |
| * |
| * Copyright (C) 2008-2009 Gregory Nutt. All rights reserved. |
| * Author: Gregory Nutt <spudmonkey@racsa.co.cr> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * 3. Neither the name NuttX nor the names of its contributors may be |
| * used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Included Files |
| ****************************************************************************/ |
| |
| #include <nuttx/config.h> |
| |
| #include <stdint.h> |
| #include <stdbool.h> |
| #include <fixedmath.h> |
| |
| #ifndef CONFIG_HAVE_LONG_LONG |
| |
| /**************************************************************************** |
| * Pre-processor Definitions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Type Declarations |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Function Prototypes |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Public Data |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Data |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Name: fixsign |
| ****************************************************************************/ |
| |
| static void fixsign(b16_t *parg1, b16_t *parg2, bool *pnegate) |
| { |
| bool negate = false; |
| b16_t arg; |
| |
| arg = *parg1; |
| if (arg < 0) |
| { |
| *parg1 = -arg; |
| negate = true; |
| } |
| |
| arg = *parg2; |
| if (arg < 0) |
| { |
| *parg2 = -arg; |
| negate ^= true; |
| } |
| |
| *pnegate = negate; |
| } |
| |
| /**************************************************************************** |
| * Name: adjustsign |
| ****************************************************************************/ |
| |
| static b16_t adjustsign(b16_t result, bool negate) |
| { |
| /* If the product is negative, then we overflowed */ |
| |
| if (result < 0) |
| { |
| if (result) |
| { |
| return b16MIN; |
| } |
| else |
| { |
| return b16MAX; |
| } |
| } |
| |
| /* correct the sign of the result */ |
| |
| if (negate) |
| { |
| return -result; |
| } |
| return result; |
| } |
| |
| /**************************************************************************** |
| * Public Functions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Name: b16mulb16 |
| ****************************************************************************/ |
| |
| b16_t b16mulb16(b16_t m1, b16_t m2) |
| { |
| bool negate; |
| b16_t product; |
| |
| fixsign(&m1, &m2, &negate); |
| product = (b16_t)ub16mulub16((ub16_t)m1, (ub16_t)m2); |
| return adjustsign(product, negate); |
| } |
| |
| /**************************************************************************** |
| * Name: ub16mulub16 |
| **************************************************************************/ |
| |
| ub16_t ub16mulub16(ub16_t m1, ub16_t m2) |
| { |
| /* Let: |
| * |
| * m1 = m1i*2**16 + m1f (b16) |
| * m2 = m2i*2**16 + m2f (b16) |
| * |
| * Then: |
| * |
| * m1*m2 = (m1i*m2i)*2**32 + (m1i*m2f + m2i*m1f)*2**16 + m1f*m2f (b32) |
| * = (m1i*m2i)*2**16 + (m1i*m2f + m2i*m1f) + m1f*m2f*2**-16 (b16) |
| * = a*2**16 + b + c*2**-16 |
| */ |
| |
| uint32_t m1i = ((uint32_t)m1 >> 16); |
| uint32_t m2i = ((uint32_t)m1 >> 16); |
| uint32_t m1f = ((uint32_t)m1 & 0x0000ffff); |
| uint32_t m2f = ((uint32_t)m2 & 0x0000ffff); |
| |
| return (m1i*m2i << 16) + m1i*m2f + m2i*m1f + (((m1f*m2f) + b16HALF) >> 16); |
| } |
| |
| /**************************************************************************** |
| * Name: b16divb16 |
| **************************************************************************/ |
| |
| b16_t b16sqr(b16_t a) |
| { |
| b16_t sq; |
| |
| /* The result is always positive. Just take the absolute value */ |
| |
| if (a < 0) |
| { |
| a = -a; |
| } |
| |
| /* Overflow occurred if the result is negative */ |
| |
| sq = (b16_t)ub16sqr(a); |
| if (sq < 0) |
| { |
| sq = b16MAX; |
| } |
| return sq; |
| } |
| |
| /**************************************************************************** |
| * Name: b16divb16 |
| **************************************************************************/ |
| |
| ub16_t ub16sqr(ub16_t a) |
| { |
| /* Let: |
| * |
| * m = mi*2**16 + mf (b16) |
| * |
| * Then: |
| * |
| * m*m = (mi*mi)*2**32 + 2*(m1*m2)*2**16 + mf*mf (b32) |
| * = (mi*mi)*2**16 + 2*(mi*mf) + mf*mf*2**-16 (b16) |
| */ |
| |
| uint32_t mi = ((uint32_t)a >> 16); |
| uint32_t mf = ((uint32_t)a & 0x0000ffff); |
| |
| return (mi*mi << 16) + (mi*mf << 1) + ((mf*mf + b16HALF) >> 16); |
| } |
| |
| /**************************************************************************** |
| * Name: b16divb16 |
| **************************************************************************/ |
| |
| b16_t b16divb16(b16_t num, b16_t denom) |
| { |
| bool negate; |
| b16_t quotient; |
| |
| fixsign(&num, &denom, &negate); |
| quotient = (b16_t)ub16divub16((ub16_t)num, (ub16_t)denom); |
| return adjustsign(quotient, negate); |
| } |
| |
| /**************************************************************************** |
| * Name: ub16divub16 |
| **************************************************************************/ |
| |
| ub16_t ub16divub16(ub16_t num, ub16_t denom) |
| { |
| uint32_t term1; |
| uint32_t numf; |
| uint32_t product; |
| |
| /* Let: |
| * |
| * num = numi*2**16 + numf (b16) |
| * den = deni*2**16 + denf (b16) |
| * |
| * Then: |
| * |
| * num/den = numi*2**16 / den + numf / den (b0) |
| * = numi*2**32 / den + numf*2**16 /den (b16) |
| */ |
| |
| /* Check for overflow in the first part of the quotient */ |
| |
| term1 = ((uint32_t)num & 0xffff0000) / denom; |
| if (term1 >= 0x00010000) |
| { |
| return ub16MAX; /* Will overflow */ |
| } |
| |
| /* Finish the division */ |
| |
| numf = num - term1 * denom; |
| term1 <<= 16; |
| product = term1 + (numf + (denom >> 1)) / denom; |
| |
| /* Check for overflow */ |
| |
| if (product < term1) |
| { |
| return ub16MAX; /* Overflowed */ |
| } |
| return product; |
| } |
| |
| #endif |