| /**************************************************************************** |
| * crypto/sha2.c |
| * $OpenBSD: sha2.c,v 1.19 2021/03/12 10:22:46 jsg Exp $ |
| * FILE: sha2.c |
| * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
| * |
| * Copyright (c) 2000-2001, Aaron D. Gifford |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the copyright holder nor the names of contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Included Files |
| ****************************************************************************/ |
| |
| #include <endian.h> |
| #include <string.h> |
| #include <sys/time.h> |
| #include <crypto/sha2.h> |
| |
| /* UNROLLED TRANSFORM LOOP NOTE: |
| * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
| * loop version for the hash transform rounds (defined using macros |
| * later in this file). Either define on the command line, for example: |
| * |
| * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
| * |
| * or define below: |
| * |
| * #define SHA2_UNROLL_TRANSFORM |
| * |
| */ |
| |
| #ifndef SMALL_KERNEL |
| # if defined(__amd64__) || defined(__i386__) |
| # define SHA2_UNROLL_TRANSFORM |
| # endif |
| #endif |
| |
| /* SHA-256/384/512 Machine Architecture Definitions */ |
| |
| /* BYTE_ORDER NOTE: |
| * |
| * Please make sure that your system defines BYTE_ORDER. If your |
| * architecture is little-endian, make sure it also defines |
| * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
| * equivalent. |
| * |
| * If your system does not define the above, then you can do so by |
| * hand like this: |
| * |
| * #define LITTLE_ENDIAN 1234 |
| * #define BIG_ENDIAN 4321 |
| * |
| * And for little-endian machines, add: |
| * |
| * #define BYTE_ORDER LITTLE_ENDIAN |
| * |
| * Or for big-endian machines: |
| * |
| * #define BYTE_ORDER BIG_ENDIAN |
| * |
| * The FreeBSD machine this was written on defines BYTE_ORDER |
| * appropriately by including <sys/types.h> (which in turn includes |
| * <machine/endian.h> where the appropriate definitions are actually |
| * made). |
| */ |
| |
| #if !defined(BYTE_ORDER) || \ |
| (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) |
| # error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN |
| #endif |
| |
| /* SHA-256/384/512 Various Length Definitions */ |
| |
| /* NOTE: Most of these are in sha2.h */ |
| |
| #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
| #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
| #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
| |
| /* Macro for incrementally adding the unsigned 64-bit integer n to the |
| * unsigned 128-bit integer (represented using a two-element array of |
| * 64-bit words): |
| */ |
| |
| #define ADDINC128(w,n) \ |
| do \ |
| { \ |
| (w)[0] += (uint64_t)(n); \ |
| if ((w)[0] < (n)) \ |
| { \ |
| (w)[1]++; \ |
| } \ |
| } \ |
| while (0) |
| |
| /* THE SIX LOGICAL FUNCTIONS */ |
| |
| /* Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
| * |
| * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
| * S is a ROTATION) because the SHA-256/384/512 description document |
| * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
| * same "backwards" definition. |
| */ |
| |
| /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
| |
| #define R(b,x) ((x) >> (b)) |
| |
| /* 32-bit Rotate-right (used in SHA-256): */ |
| |
| #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
| |
| /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
| |
| #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
| |
| /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
| |
| #define CH(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
| |
| #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| |
| /* Four of six logical functions used in SHA-256: */ |
| |
| #define SIGMA0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
| #define SIGMA1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
| #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3, (x))) |
| #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| |
| /* Four of six logical functions used in SHA-384 and SHA-512: */ |
| |
| #define SIGMA0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
| #define SIGMA1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
| #define sigma0_512(x) (S64(1, (x)) ^ S64( 8, (x)) ^ R(7, (x))) |
| #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R(6, (x))) |
| |
| /* INTERNAL FUNCTION PROTOTYPES */ |
| |
| /* NOTE: These should not be accessed directly from outside this |
| * library -- they are intended for private internal visibility/use |
| * only. |
| */ |
| |
| void sha512last(FAR SHA2_CTX *); |
| void sha256transform(FAR uint32_t *, FAR const uint8_t *); |
| void sha512transform(FAR uint64_t *, FAR const uint8_t *); |
| |
| /* SHA-XYZ INITIAL HASH VALUES AND CONSTANTS */ |
| |
| /* Hash constant words K for SHA-256: */ |
| |
| const static uint32_t K256[64] = |
| { |
| 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, |
| 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, |
| 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, |
| 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, |
| 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, |
| 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, |
| 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, |
| 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, |
| 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, |
| 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, |
| 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, |
| 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, |
| 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, |
| 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, |
| 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, |
| 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul |
| }; |
| |
| /* Initial hash value H for SHA-256: */ |
| |
| const static uint32_t sha256_initial_hash_value[8] = |
| { |
| 0x6a09e667ul, |
| 0xbb67ae85ul, |
| 0x3c6ef372ul, |
| 0xa54ff53aul, |
| 0x510e527ful, |
| 0x9b05688cul, |
| 0x1f83d9abul, |
| 0x5be0cd19ul |
| }; |
| |
| /* Initial hash value H for SHA-224: */ |
| |
| const static uint32_t sha224_initial_hash_value[8] = |
| { |
| 0xc1059ed8ul, |
| 0x367cd507ul, |
| 0x3070dd17ul, |
| 0xf70e5939ul, |
| 0xffc00b31ul, |
| 0x68581511ul, |
| 0x64f98fa7ul, |
| 0xbefa4fa4ul |
| }; |
| |
| /* Hash constant words K for SHA-384 and SHA-512: */ |
| |
| const static uint64_t K512[80] = |
| { |
| 0x428a2f98d728ae22ull, 0x7137449123ef65cdull, |
| 0xb5c0fbcfec4d3b2full, 0xe9b5dba58189dbbcull, |
| 0x3956c25bf348b538ull, 0x59f111f1b605d019ull, |
| 0x923f82a4af194f9bull, 0xab1c5ed5da6d8118ull, |
| 0xd807aa98a3030242ull, 0x12835b0145706fbeull, |
| 0x243185be4ee4b28cull, 0x550c7dc3d5ffb4e2ull, |
| 0x72be5d74f27b896full, 0x80deb1fe3b1696b1ull, |
| 0x9bdc06a725c71235ull, 0xc19bf174cf692694ull, |
| 0xe49b69c19ef14ad2ull, 0xefbe4786384f25e3ull, |
| 0x0fc19dc68b8cd5b5ull, 0x240ca1cc77ac9c65ull, |
| 0x2de92c6f592b0275ull, 0x4a7484aa6ea6e483ull, |
| 0x5cb0a9dcbd41fbd4ull, 0x76f988da831153b5ull, |
| 0x983e5152ee66dfabull, 0xa831c66d2db43210ull, |
| 0xb00327c898fb213full, 0xbf597fc7beef0ee4ull, |
| 0xc6e00bf33da88fc2ull, 0xd5a79147930aa725ull, |
| 0x06ca6351e003826full, 0x142929670a0e6e70ull, |
| 0x27b70a8546d22ffcull, 0x2e1b21385c26c926ull, |
| 0x4d2c6dfc5ac42aedull, 0x53380d139d95b3dfull, |
| 0x650a73548baf63deull, 0x766a0abb3c77b2a8ull, |
| 0x81c2c92e47edaee6ull, 0x92722c851482353bull, |
| 0xa2bfe8a14cf10364ull, 0xa81a664bbc423001ull, |
| 0xc24b8b70d0f89791ull, 0xc76c51a30654be30ull, |
| 0xd192e819d6ef5218ull, 0xd69906245565a910ull, |
| 0xf40e35855771202aull, 0x106aa07032bbd1b8ull, |
| 0x19a4c116b8d2d0c8ull, 0x1e376c085141ab53ull, |
| 0x2748774cdf8eeb99ull, 0x34b0bcb5e19b48a8ull, |
| 0x391c0cb3c5c95a63ull, 0x4ed8aa4ae3418acbull, |
| 0x5b9cca4f7763e373ull, 0x682e6ff3d6b2b8a3ull, |
| 0x748f82ee5defb2fcull, 0x78a5636f43172f60ull, |
| 0x84c87814a1f0ab72ull, 0x8cc702081a6439ecull, |
| 0x90befffa23631e28ull, 0xa4506cebde82bde9ull, |
| 0xbef9a3f7b2c67915ull, 0xc67178f2e372532bull, |
| 0xca273eceea26619cull, 0xd186b8c721c0c207ull, |
| 0xeada7dd6cde0eb1eull, 0xf57d4f7fee6ed178ull, |
| 0x06f067aa72176fbaull, 0x0a637dc5a2c898a6ull, |
| 0x113f9804bef90daeull, 0x1b710b35131c471bull, |
| 0x28db77f523047d84ull, 0x32caab7b40c72493ull, |
| 0x3c9ebe0a15c9bebcull, 0x431d67c49c100d4cull, |
| 0x4cc5d4becb3e42b6ull, 0x597f299cfc657e2aull, |
| 0x5fcb6fab3ad6faecull, 0x6c44198c4a475817ull |
| }; |
| |
| /* Initial hash value H for SHA-384 */ |
| |
| const static uint64_t sha384_initial_hash_value[8] = |
| { |
| 0xcbbb9d5dc1059ed8ull, |
| 0x629a292a367cd507ull, |
| 0x9159015a3070dd17ull, |
| 0x152fecd8f70e5939ull, |
| 0x67332667ffc00b31ull, |
| 0x8eb44a8768581511ull, |
| 0xdb0c2e0d64f98fa7ull, |
| 0x47b5481dbefa4fa4ull |
| }; |
| |
| /* Initial hash value H for SHA-512 */ |
| |
| const static uint64_t sha512_initial_hash_value[8] = |
| { |
| 0x6a09e667f3bcc908ull, |
| 0xbb67ae8584caa73bull, |
| 0x3c6ef372fe94f82bull, |
| 0xa54ff53a5f1d36f1ull, |
| 0x510e527fade682d1ull, |
| 0x9b05688c2b3e6c1full, |
| 0x1f83d9abfb41bd6bull, |
| 0x5be0cd19137e2179ull |
| }; |
| |
| /**************************************************************************** |
| * Public Functions |
| ****************************************************************************/ |
| |
| /* SHA-256: */ |
| |
| void sha256init(FAR SHA2_CTX *context) |
| { |
| memcpy(context->state.st32, |
| sha256_initial_hash_value, |
| SHA256_DIGEST_LENGTH); |
| |
| memset(context->buffer, 0, SHA256_BLOCK_LENGTH); |
| context->bitcount[0] = 0; |
| } |
| |
| #ifdef SHA2_UNROLL_TRANSFORM |
| |
| /* Unrolled SHA-256 round macros: */ |
| |
| #define ROUND256_0_TO_15(a, b, c, d, e, f, g, h) \ |
| do \ |
| { \ |
| W256[j] = (uint32_t)data[3] | ((uint32_t)data[2] << 8) | \ |
| ((uint32_t)data[1] << 16) | ((uint32_t)data[0] << 24); \ |
| data += 4; \ |
| T1 = (h) + SIGMA1_256((e)) + \ |
| CH((e), (f), (g)) + K256[j] + W256[j]; \ |
| (d) += T1; \ |
| (h) = T1 + SIGMA0_256((a)) + MAJ((a), (b), (c)); \ |
| j++; \ |
| } \ |
| while (0) |
| |
| #define ROUND256(a, b, c, d, e, f, g, h) \ |
| do \ |
| { \ |
| s0 = W256[(j + 1) & 0x0f]; \ |
| s0 = sigma0_256(s0); \ |
| s1 = W256[(j+14)&0x0f]; \ |
| s1 = sigma1_256(s1); \ |
| T1 = (h) + SIGMA1_256((e)) + CH((e), (f), (g)) + K256[j] + \ |
| (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); \ |
| (d) += T1; \ |
| (h) = T1 + SIGMA0_256((a)) + MAJ((a), (b), (c)); \ |
| j++; \ |
| } \ |
| while(0) |
| |
| void sha256transform(FAR uint32_t *state, FAR const uint8_t *data) |
| { |
| uint32_t a; |
| uint32_t b; |
| uint32_t c; |
| uint32_t d; |
| uint32_t e; |
| uint32_t f; |
| uint32_t g; |
| uint32_t h; |
| uint32_t s0; |
| uint32_t s1; |
| uint32_t T1; |
| uint32_t W256[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do |
| { |
| /* Rounds 0 to 15 (unrolled): */ |
| |
| ROUND256_0_TO_15(a, b, c, d, e, f, g, h); |
| ROUND256_0_TO_15(h, a, b, c, d, e, f, g); |
| ROUND256_0_TO_15(g, h, a, b, c, d, e, f); |
| ROUND256_0_TO_15(f, g, h, a, b, c, d, e); |
| ROUND256_0_TO_15(e, f, g, h, a, b, c, d); |
| ROUND256_0_TO_15(d, e, f, g, h, a, b, c); |
| ROUND256_0_TO_15(c, d, e, f, g, h, a, b); |
| ROUND256_0_TO_15(b, c, d, e, f, g, h, a); |
| } |
| while (j < 16); |
| |
| /* Now for the remaining rounds to 64: */ |
| |
| do |
| { |
| ROUND256(a, b, c, d, e, f, g, h); |
| ROUND256(h, a, b, c, d, e, f, g); |
| ROUND256(g, h, a, b, c, d, e, f); |
| ROUND256(f, g, h, a, b, c, d, e); |
| ROUND256(e, f, g, h, a, b, c, d); |
| ROUND256(d, e, f, g, h, a, b, c); |
| ROUND256(c, d, e, f, g, h, a, b); |
| ROUND256(b, c, d, e, f, g, h, a); |
| } |
| while (j < 64); |
| |
| /* Compute the current intermediate hash value */ |
| |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| |
| a = b = c = d = e = f = g = h = T1 = 0; |
| } |
| |
| #else /* SHA2_UNROLL_TRANSFORM */ |
| |
| void sha256transform(FAR uint32_t *state, FAR const uint8_t *data) |
| { |
| uint32_t a; |
| uint32_t b; |
| uint32_t c; |
| uint32_t d; |
| uint32_t e; |
| uint32_t f; |
| uint32_t g; |
| uint32_t h; |
| uint32_t s0; |
| uint32_t s1; |
| uint32_t T1; |
| uint32_t T2; |
| uint32_t W256[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do |
| { |
| W256[j] = (uint32_t)data[3] | ((uint32_t)data[2] << 8) | |
| ((uint32_t)data[1] << 16) | ((uint32_t)data[0] << 24); |
| data += 4; |
| |
| /* Apply the SHA-256 compression function to update a..h */ |
| |
| T1 = h + SIGMA1_256(e) + CH(e, f, g) + K256[j] + W256[j]; |
| T2 = SIGMA0_256(a) + MAJ(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } |
| while (j < 16); |
| |
| do |
| { |
| /* Part of the message block expansion: */ |
| |
| s0 = W256[(j + 1) & 0x0f]; |
| s0 = sigma0_256(s0); |
| s1 = W256[(j + 14) & 0x0f]; |
| s1 = sigma1_256(s1); |
| |
| /* Apply the SHA-256 compression function to update a..h */ |
| |
| T1 = h + SIGMA1_256(e) + CH(e, f, g) + K256[j] + |
| (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); |
| T2 = SIGMA0_256(a) + MAJ(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } |
| while (j < 64); |
| |
| /* Compute the current intermediate hash value */ |
| |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| |
| a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| } |
| |
| #endif /* SHA2_UNROLL_TRANSFORM */ |
| |
| void sha256update(FAR SHA2_CTX *context, |
| FAR const void *dataptr, |
| size_t len) |
| { |
| FAR const uint8_t *data = dataptr; |
| size_t freespace; |
| size_t usedspace; |
| |
| /* Calling with no data is valid (we do nothing) */ |
| |
| if (len == 0) |
| { |
| return; |
| } |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; |
| if (usedspace > 0) |
| { |
| /* Calculate how much free space is available in the buffer */ |
| |
| freespace = SHA256_BLOCK_LENGTH - usedspace; |
| |
| if (len >= freespace) |
| { |
| /* Fill the buffer completely and process it */ |
| |
| memcpy(&context->buffer[usedspace], data, freespace); |
| context->bitcount[0] += freespace << 3; |
| len -= freespace; |
| data += freespace; |
| sha256transform(context->state.st32, context->buffer); |
| } |
| else |
| { |
| /* The buffer is not yet full */ |
| |
| memcpy(&context->buffer[usedspace], data, len); |
| context->bitcount[0] += len << 3; |
| |
| /* Clean up: */ |
| |
| usedspace = freespace = 0; |
| return; |
| } |
| } |
| |
| while (len >= SHA256_BLOCK_LENGTH) |
| { |
| /* Process as many complete blocks as we can */ |
| |
| sha256transform(context->state.st32, data); |
| context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; |
| len -= SHA256_BLOCK_LENGTH; |
| data += SHA256_BLOCK_LENGTH; |
| } |
| |
| if (len > 0) |
| { |
| /* There's left-overs, so save 'em */ |
| |
| memcpy(context->buffer, data, len); |
| context->bitcount[0] += len << 3; |
| } |
| |
| /* Clean up: */ |
| |
| usedspace = freespace = 0; |
| } |
| |
| void sha256last(FAR SHA2_CTX *context) |
| { |
| unsigned int usedspace; |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| |
| /* Convert FROM host byte order */ |
| |
| context->bitcount[0] = swap64(context->bitcount[0]); |
| #endif |
| |
| if (usedspace > 0) |
| { |
| /* Begin padding with a 1 bit: */ |
| |
| context->buffer[usedspace++] = 0x80; |
| |
| if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) |
| { |
| /* Set-up for the last transform: */ |
| |
| memset(&context->buffer[usedspace], 0, |
| SHA256_SHORT_BLOCK_LENGTH - usedspace); |
| } |
| else |
| { |
| if (usedspace < SHA256_BLOCK_LENGTH) |
| { |
| memset(&context->buffer[usedspace], 0, |
| SHA256_BLOCK_LENGTH - usedspace); |
| } |
| |
| /* Do second-to-last transform: */ |
| |
| sha256transform(context->state.st32, context->buffer); |
| |
| /* And set-up for the last transform: */ |
| |
| memset(context->buffer, 0, |
| SHA256_SHORT_BLOCK_LENGTH); |
| } |
| } |
| else |
| { |
| /* Set-up for the last transform: */ |
| |
| memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
| |
| /* Begin padding with a 1 bit: */ |
| |
| *context->buffer = 0x80; |
| } |
| |
| /* Set the bit count: */ |
| |
| *(FAR uint64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = |
| context->bitcount[0]; |
| |
| /* Final transform: */ |
| |
| sha256transform(context->state.st32, context->buffer); |
| } |
| |
| void sha256final(FAR uint8_t *digest, FAR SHA2_CTX *context) |
| { |
| sha256last(context); |
| |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| { |
| /* Convert TO host byte order */ |
| |
| int j; |
| |
| for (j = 0; j < 8; j++) |
| { |
| context->state.st32[j] = swap32(context->state.st32[j]); |
| } |
| } |
| #endif |
| |
| memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); |
| |
| /* Clean up state data: */ |
| |
| explicit_bzero(context, sizeof(*context)); |
| } |
| |
| /* SHA-224: */ |
| |
| void sha224init(FAR SHA2_CTX *context) |
| { |
| memcpy(context->state.st32, |
| sha224_initial_hash_value, |
| SHA256_DIGEST_LENGTH); |
| |
| memset(context->buffer, 0, SHA224_BLOCK_LENGTH); |
| context->bitcount[0] = 0; |
| } |
| |
| void sha224update(FAR SHA2_CTX *context, FAR const void *data, size_t len) |
| { |
| sha256update(context, data, len); |
| } |
| |
| void sha224final(FAR uint8_t *digest, FAR SHA2_CTX *context) |
| { |
| sha256last(context); |
| |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| { |
| /* Convert TO host byte order */ |
| |
| int j; |
| |
| for (j = 0; j < 8; j++) |
| { |
| context->state.st32[j] = swap32(context->state.st32[j]); |
| } |
| } |
| #endif |
| |
| memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH); |
| |
| /* Clean up state data: */ |
| |
| explicit_bzero(context, sizeof(*context)); |
| } |
| |
| /* SHA-512: */ |
| |
| void sha512init(FAR SHA2_CTX *context) |
| { |
| memcpy(context->state.st64, sha512_initial_hash_value, |
| SHA512_DIGEST_LENGTH); |
| memset(context->buffer, 0, SHA512_BLOCK_LENGTH); |
| context->bitcount[0] = context->bitcount[1] = 0; |
| } |
| |
| #ifdef SHA2_UNROLL_TRANSFORM |
| |
| /* Unrolled SHA-512 round macros: */ |
| |
| #define ROUND512_0_TO_15(a, b, c, d, e, f, g, h) \ |
| do \ |
| { \ |
| W512[j] = (uint64_t)data[7] | ((uint64_t)data[6] << 8) | \ |
| ((uint64_t)data[5] << 16) | ((uint64_t)data[4] << 24) | \ |
| ((uint64_t)data[3] << 32) | ((uint64_t)data[2] << 40) | \ |
| ((uint64_t)data[1] << 48) | ((uint64_t)data[0] << 56); \ |
| data += 8; \ |
| T1 = (h) + SIGMA1_512((e)) + CH((e), (f), (g)) + K512[j] + W512[j]; \ |
| (d) += T1; \ |
| (h) = T1 + SIGMA0_512((a)) + MAJ((a), (b), (c)); \ |
| j++; \ |
| } \ |
| while (0) |
| |
| #define ROUND512(a, b, c, d, e, f, g, h) \ |
| do \ |
| { \ |
| s0 = W512[(j + 1) & 0x0f]; \ |
| s0 = sigma0_512(s0); \ |
| s1 = W512[(j + 14) & 0x0f]; \ |
| s1 = sigma1_512(s1); \ |
| T1 = (h) + SIGMA1_512((e)) + CH((e), (f), (g)) + K512[j] + \ |
| (W512[j & 0x0f] += s1 + W512[(j +9 ) & 0x0f] + s0); \ |
| (d) += T1; \ |
| (h) = T1 + SIGMA0_512((a)) + MAJ((a), (b), (c)); \ |
| j++; \ |
| } \ |
| while(0) |
| |
| void sha512transform(FAR uint64_t *state, FAR const uint8_t *data) |
| { |
| uint64_t a; |
| uint64_t b; |
| uint64_t c; |
| uint64_t d; |
| uint64_t e; |
| uint64_t f; |
| uint64_t g; |
| uint64_t h; |
| uint64_t s0; |
| uint64_t s1; |
| uint64_t T1; |
| uint64_t W512[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do |
| { |
| ROUND512_0_TO_15(a, b, c, d, e, f, g, h); |
| ROUND512_0_TO_15(h, a, b, c, d, e, f, g); |
| ROUND512_0_TO_15(g, h, a, b, c, d, e, f); |
| ROUND512_0_TO_15(f, g, h, a, b, c, d, e); |
| ROUND512_0_TO_15(e, f, g, h, a, b, c, d); |
| ROUND512_0_TO_15(d, e, f, g, h, a, b, c); |
| ROUND512_0_TO_15(c, d, e, f, g, h, a, b); |
| ROUND512_0_TO_15(b, c, d, e, f, g, h, a); |
| } |
| while (j < 16); |
| |
| /* Now for the remaining rounds up to 79: */ |
| |
| do |
| { |
| ROUND512(a, b, c, d, e, f, g, h); |
| ROUND512(h, a, b, c, d, e, f, g); |
| ROUND512(g, h, a, b, c, d, e, f); |
| ROUND512(f, g, h, a, b, c, d, e); |
| ROUND512(e, f, g, h, a, b, c, d); |
| ROUND512(d, e, f, g, h, a, b, c); |
| ROUND512(c, d, e, f, g, h, a, b); |
| ROUND512(b, c, d, e, f, g, h, a); |
| } |
| while (j < 80); |
| |
| /* Compute the current intermediate hash value */ |
| |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| |
| a = b = c = d = e = f = g = h = T1 = 0; |
| } |
| |
| #else /* SHA2_UNROLL_TRANSFORM */ |
| |
| void sha512transform(FAR uint64_t *state, FAR const uint8_t *data) |
| { |
| uint64_t a; |
| uint64_t b; |
| uint64_t c; |
| uint64_t d; |
| uint64_t e; |
| uint64_t f; |
| uint64_t g; |
| uint64_t h; |
| uint64_t s0; |
| uint64_t s1; |
| uint64_t T1; |
| uint64_t T2; |
| uint64_t W512[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do |
| { |
| W512[j] = (uint64_t)data[7] | ((uint64_t)data[6] << 8) | |
| ((uint64_t)data[5] << 16) | ((uint64_t)data[4] << 24) | |
| ((uint64_t)data[3] << 32) | ((uint64_t)data[2] << 40) | |
| ((uint64_t)data[1] << 48) | ((uint64_t)data[0] << 56); |
| data += 8; |
| |
| /* Apply the SHA-512 compression function to update a..h */ |
| |
| T1 = h + SIGMA1_512(e) + CH(e, f, g) + K512[j] + W512[j]; |
| T2 = SIGMA0_512(a) + MAJ(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } |
| while (j < 16); |
| |
| do |
| { |
| /* Part of the message block expansion: */ |
| |
| s0 = W512[(j + 1) & 0x0f]; |
| s0 = sigma0_512(s0); |
| s1 = W512[(j + 14) & 0x0f]; |
| s1 = sigma1_512(s1); |
| |
| /* Apply the SHA-512 compression function to update a..h */ |
| |
| T1 = h + SIGMA1_512(e) + CH(e, f, g) + K512[j] + |
| (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); |
| T2 = SIGMA0_512(a) + MAJ(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } |
| while (j < 80); |
| |
| /* Compute the current intermediate hash value */ |
| |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| |
| a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| } |
| |
| #endif /* SHA2_UNROLL_TRANSFORM */ |
| |
| void sha512update(FAR SHA2_CTX *context, FAR const void *dataptr, size_t len) |
| { |
| FAR const uint8_t *data = dataptr; |
| size_t freespace; |
| size_t usedspace; |
| |
| /* Calling with no data is valid (we do nothing) */ |
| |
| if (len == 0) |
| { |
| return; |
| } |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
| if (usedspace > 0) |
| { |
| /* Calculate how much free space is available in the buffer */ |
| |
| freespace = SHA512_BLOCK_LENGTH - usedspace; |
| |
| if (len >= freespace) |
| { |
| /* Fill the buffer completely and process it */ |
| |
| memcpy(&context->buffer[usedspace], data, freespace); |
| ADDINC128(context->bitcount, freespace << 3); |
| len -= freespace; |
| data += freespace; |
| sha512transform(context->state.st64, context->buffer); |
| } |
| else |
| { |
| /* The buffer is not yet full */ |
| |
| memcpy(&context->buffer[usedspace], data, len); |
| ADDINC128(context->bitcount, len << 3); |
| |
| /* Clean up: */ |
| |
| usedspace = freespace = 0; |
| return; |
| } |
| } |
| |
| while (len >= SHA512_BLOCK_LENGTH) |
| { |
| /* Process as many complete blocks as we can */ |
| |
| sha512transform(context->state.st64, data); |
| ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
| len -= SHA512_BLOCK_LENGTH; |
| data += SHA512_BLOCK_LENGTH; |
| } |
| |
| if (len > 0) |
| { |
| /* There's left-overs, so save 'em */ |
| |
| memcpy(context->buffer, data, len); |
| ADDINC128(context->bitcount, len << 3); |
| } |
| |
| /* Clean up: */ |
| |
| usedspace = freespace = 0; |
| } |
| |
| void sha512last(FAR SHA2_CTX *context) |
| { |
| unsigned int usedspace; |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| |
| /* Convert FROM host byte order */ |
| |
| context->bitcount[0] = swap64(context->bitcount[0]); |
| context->bitcount[1] = swap64(context->bitcount[1]); |
| #endif |
| if (usedspace > 0) |
| { |
| /* Begin padding with a 1 bit: */ |
| |
| context->buffer[usedspace++] = 0x80; |
| |
| if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) |
| { |
| /* Set-up for the last transform: */ |
| |
| memset(&context->buffer[usedspace], 0, |
| SHA512_SHORT_BLOCK_LENGTH - usedspace); |
| } |
| else |
| { |
| if (usedspace < SHA512_BLOCK_LENGTH) |
| { |
| memset(&context->buffer[usedspace], 0, |
| SHA512_BLOCK_LENGTH - usedspace); |
| } |
| |
| /* Do second-to-last transform: */ |
| |
| sha512transform(context->state.st64, context->buffer); |
| |
| /* And set-up for the last transform: */ |
| |
| memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); |
| } |
| } |
| else |
| { |
| /* Prepare for final transform: */ |
| |
| memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); |
| |
| /* Begin padding with a 1 bit: */ |
| |
| *context->buffer = 0x80; |
| } |
| |
| /* Store the length of input data (in bits): */ |
| |
| *(FAR uint64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = |
| context->bitcount[1]; |
| *(FAR uint64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = |
| context->bitcount[0]; |
| |
| /* Final transform: */ |
| |
| sha512transform(context->state.st64, context->buffer); |
| } |
| |
| void sha512final(FAR uint8_t *digest, FAR SHA2_CTX *context) |
| { |
| sha512last(context); |
| |
| /* Save the hash data for output: */ |
| |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| { |
| /* Convert TO host byte order */ |
| |
| int j; |
| for (j = 0; j < 8; j++) |
| { |
| context->state.st64[j] = swap64(context->state.st64[j]); |
| } |
| } |
| #endif |
| |
| memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); |
| |
| /* Zero out state data */ |
| |
| explicit_bzero(context, sizeof(*context)); |
| } |
| |
| /* SHA-384: */ |
| |
| void sha384init(FAR SHA2_CTX *context) |
| { |
| memcpy(context->state.st64, sha384_initial_hash_value, |
| SHA512_DIGEST_LENGTH); |
| memset(context->buffer, 0, SHA384_BLOCK_LENGTH); |
| context->bitcount[0] = context->bitcount[1] = 0; |
| } |
| |
| void sha384update(FAR SHA2_CTX *context, FAR const void *data, size_t len) |
| { |
| sha512update(context, data, len); |
| } |
| |
| void sha384final(FAR uint8_t *digest, FAR SHA2_CTX *context) |
| { |
| sha512last(context); |
| |
| /* Save the hash data for output: */ |
| |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| { |
| /* Convert TO host byte order */ |
| |
| int j; |
| for (j = 0; j < 6; j++) |
| { |
| context->state.st64[j] = swap64(context->state.st64[j]); |
| } |
| } |
| #endif |
| |
| memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); |
| |
| /* Zero out state data */ |
| |
| explicit_bzero(context, sizeof(*context)); |
| } |