| /**************************************************************************** |
| * crypto/cryptosoft.c |
| * $OpenBSD: cryptosoft.c,v 1.71 2014/07/13 23:24:47 deraadt Exp $ |
| * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) |
| * |
| * This code was written by Angelos D. Keromytis in Athens, Greece, in |
| * February 2000. Network Security Technologies Inc. (NSTI) kindly |
| * supported the development of this code. |
| * |
| * Copyright (c) 2000, 2001 Angelos D. Keromytis |
| * |
| * Permission to use, copy, and modify this software with or without fee |
| * is hereby granted, provided that this entire notice is included in |
| * all source code copies of any software which is or includes a copy or |
| * modification of this software. |
| * |
| * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR |
| * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY |
| * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE |
| * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR |
| * PURPOSE. |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Included Files |
| ****************************************************************************/ |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <endian.h> |
| #include <nuttx/kmalloc.h> |
| #include <crypto/bn.h> |
| #include <crypto/cryptodev.h> |
| #include <crypto/cryptosoft.h> |
| #include <crypto/xform.h> |
| #include <sys/param.h> |
| |
| /**************************************************************************** |
| * Pre-processor Definitions |
| ****************************************************************************/ |
| |
| #ifndef howmany |
| # define howmany(x, y) (((x) + ((y) - 1)) / (y)) |
| #endif |
| |
| /**************************************************************************** |
| * Private Data |
| ****************************************************************************/ |
| |
| FAR struct swcr_data **swcr_sessions = NULL; |
| uint32_t swcr_sesnum = 0; |
| int swcr_id = -1; |
| |
| /**************************************************************************** |
| * Public Functions |
| ****************************************************************************/ |
| |
| /* Apply a symmetric encryption/decryption algorithm. */ |
| |
| int swcr_encdec(FAR struct cryptop *crp, FAR struct cryptodesc *crd, |
| FAR struct swcr_data *sw, caddr_t buf) |
| { |
| unsigned char blk[EALG_MAX_BLOCK_LEN]; |
| FAR unsigned char *iv; |
| FAR unsigned char *ivp; |
| FAR unsigned char *nivp; |
| unsigned char iv2[EALG_MAX_BLOCK_LEN]; |
| FAR const struct enc_xform *exf; |
| int i; |
| int j; |
| int blks; |
| int ivlen; |
| |
| exf = sw->sw_exf; |
| blks = exf->blocksize; |
| ivlen = exf->ivsize; |
| |
| /* Initialize the IV */ |
| |
| if (crd->crd_flags & CRD_F_ENCRYPT) |
| { |
| /* Do we need to write the IV */ |
| |
| if (!(crd->crd_flags & CRD_F_IV_PRESENT)) |
| { |
| arc4random_buf(crd->crd_iv, ivlen); |
| bcopy(crd->crd_iv, buf + crd->crd_inject, ivlen); |
| } |
| } |
| else |
| { |
| /* Decryption */ |
| |
| /* IV explicitly provided ? */ |
| |
| if (!(crd->crd_flags & CRD_F_IV_EXPLICIT)) |
| { |
| /* Get IV off buf */ |
| |
| bcopy(crd->crd_iv, buf + crd->crd_inject, ivlen); |
| } |
| } |
| |
| iv = crd->crd_iv; |
| ivp = iv; |
| |
| /* xforms that provide a reinit method perform all IV |
| * handling themselves. |
| */ |
| |
| if (exf->reinit) |
| { |
| exf->reinit((caddr_t)sw->sw_kschedule, iv); |
| } |
| |
| i = crd->crd_len; |
| |
| buf = buf + crd->crd_skip; |
| while (i > 0) |
| { |
| bcopy(buf, blk, exf->blocksize); |
| buf += exf->blocksize; |
| if (exf->reinit) |
| { |
| if (crd->crd_flags & CRD_F_ENCRYPT) |
| { |
| exf->encrypt((caddr_t)sw->sw_kschedule, |
| blk); |
| } |
| else |
| { |
| exf->decrypt((caddr_t)sw->sw_kschedule, |
| blk); |
| } |
| } |
| else if (crd->crd_flags & CRD_F_ENCRYPT) |
| { |
| /* XOR with previous block */ |
| |
| for (j = 0; j < blks; j++) |
| blk[j] ^= ivp[j]; |
| |
| exf->encrypt((caddr_t)sw->sw_kschedule, blk); |
| |
| /* Keep encrypted block for XOR'ng |
| * with next block |
| */ |
| |
| bcopy(blk, iv, blks); |
| ivp = iv; |
| } |
| else |
| { |
| /* decrypt */ |
| |
| /* Keep encrypted block for XOR'ing |
| * with next block |
| */ |
| |
| nivp = (ivp == iv) ? iv2 : iv; |
| bcopy(blk, nivp, blks); |
| |
| exf->decrypt((caddr_t)sw->sw_kschedule, blk); |
| |
| /* XOR with previous block */ |
| |
| for (j = 0; j < blks; j++) |
| { |
| blk[j] ^= ivp[j]; |
| } |
| |
| ivp = nivp; |
| } |
| |
| bcopy(blk, crp->crp_dst, exf->blocksize); |
| crp->crp_dst += exf->blocksize; |
| |
| i -= blks; |
| |
| /* Could be done... */ |
| |
| if (i == 0) |
| { |
| break; |
| } |
| } |
| |
| bcopy(ivp, crp->crp_iv, ivlen); |
| |
| return 0; /* Done with encryption/decryption */ |
| } |
| |
| /* Compute keyed-hash authenticator. */ |
| |
| int swcr_authcompute(FAR struct cryptop *crp, |
| FAR struct cryptodesc *crd, |
| FAR struct swcr_data *sw, |
| caddr_t buf) |
| { |
| unsigned char aalg[AALG_MAX_RESULT_LEN]; |
| FAR const struct auth_hash *axf = sw->sw_axf; |
| int err; |
| |
| if (sw->sw_ictx == 0) |
| { |
| return -EINVAL; |
| } |
| |
| err = axf->update(&sw->sw_ctx, (FAR uint8_t *)buf + crd->crd_skip, |
| crd->crd_len); |
| |
| if (err) |
| { |
| return err; |
| } |
| |
| if (crd->crd_flags & CRD_F_ESN) |
| { |
| axf->update(&sw->sw_ctx, crd->crd_esn, 4); |
| } |
| |
| switch (sw->sw_alg) |
| { |
| case CRYPTO_MD5_HMAC: |
| case CRYPTO_SHA1_HMAC: |
| case CRYPTO_RIPEMD160_HMAC: |
| case CRYPTO_SHA2_256_HMAC: |
| case CRYPTO_SHA2_384_HMAC: |
| case CRYPTO_SHA2_512_HMAC: |
| if (sw->sw_octx == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| if (crd->crd_flags & CRD_F_UPDATE) |
| { |
| break; |
| } |
| |
| axf->final(aalg, &sw->sw_ctx); |
| bcopy(sw->sw_octx, &sw->sw_ctx, axf->ctxsize); |
| axf->update(&sw->sw_ctx, aalg, axf->hashsize); |
| axf->final((FAR uint8_t *)crp->crp_mac, &sw->sw_ctx); |
| bcopy(sw->sw_ictx, &sw->sw_ctx, axf->ctxsize); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int swcr_hash(FAR struct cryptop *crp, |
| FAR struct cryptodesc *crd, |
| FAR struct swcr_data *sw, |
| caddr_t buf) |
| { |
| FAR const struct auth_hash *axf = sw->sw_axf; |
| |
| if (crd->crd_flags & CRD_F_UPDATE) |
| { |
| return axf->update(&sw->sw_ctx, (FAR uint8_t *)buf + crd->crd_skip, |
| crd->crd_len); |
| } |
| else |
| { |
| axf->final((FAR uint8_t *)crp->crp_mac, &sw->sw_ctx); |
| } |
| |
| return 0; |
| } |
| |
| /* Apply a combined encryption-authentication transformation */ |
| |
| int swcr_authenc(FAR struct cryptop *crp) |
| { |
| uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))]; |
| FAR u_char *blk = (u_char *)blkbuf; |
| u_char aalg[AALG_MAX_RESULT_LEN]; |
| u_char iv[EALG_MAX_BLOCK_LEN]; |
| union authctx ctx; |
| FAR struct cryptodesc *crd; |
| FAR struct cryptodesc *crda = NULL; |
| FAR struct cryptodesc *crde = NULL; |
| FAR struct swcr_data *sw; |
| FAR struct swcr_data *swa; |
| FAR struct swcr_data *swe = NULL; |
| FAR const struct auth_hash *axf = NULL; |
| FAR const struct enc_xform *exf = NULL; |
| caddr_t buf = (caddr_t)crp->crp_buf; |
| FAR uint32_t *blkp; |
| int blksz = 0; |
| int ivlen = 0; |
| int iskip = 0; |
| int oskip = 0; |
| int aadlen; |
| int len; |
| int i; |
| |
| for (crd = crp->crp_desc; crd; crd = crd->crd_next) |
| { |
| for (sw = swcr_sessions[crp->crp_sid & 0xffffffff]; |
| sw && sw->sw_alg != crd->crd_alg; |
| sw = sw->sw_next); |
| |
| if (sw == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| switch (sw->sw_alg) |
| { |
| case CRYPTO_AES_GCM_16: |
| case CRYPTO_AES_GMAC: |
| case CRYPTO_CHACHA20_POLY1305: |
| swe = sw; |
| crde = crd; |
| exf = swe->sw_exf; |
| ivlen = exf->ivsize; |
| break; |
| case CRYPTO_AES_128_GMAC: |
| case CRYPTO_AES_192_GMAC: |
| case CRYPTO_AES_256_GMAC: |
| case CRYPTO_CHACHA20_POLY1305_MAC: |
| swa = sw; |
| crda = crd; |
| axf = swa->sw_axf; |
| if (swa->sw_ictx == 0) |
| { |
| return -EINVAL; |
| } |
| |
| bcopy(swa->sw_ictx, &ctx, axf->ctxsize); |
| blksz = axf->blocksize; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| if (crde == NULL || crda == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| /* Initialize the IV */ |
| |
| if (crde->crd_flags & CRD_F_ENCRYPT) |
| { |
| /* IV explicitly provided ? */ |
| |
| if (crde->crd_flags & CRD_F_IV_EXPLICIT) |
| { |
| bcopy(crde->crd_iv, iv, ivlen); |
| } |
| else |
| { |
| arc4random_buf(iv, ivlen); |
| } |
| |
| if (!((crde->crd_flags) & CRD_F_IV_PRESENT)) |
| { |
| bcopy(iv, buf + crde->crd_inject, ivlen); |
| } |
| } |
| else |
| { |
| /* Decryption */ |
| |
| /* IV explicitly provided ? */ |
| |
| if (crde->crd_flags & CRD_F_IV_EXPLICIT) |
| { |
| bcopy(crde->crd_iv, iv, ivlen); |
| } |
| else |
| { |
| /* Get IV off buf */ |
| |
| bcopy(iv, buf + crde->crd_inject, ivlen); |
| } |
| } |
| |
| /* Supply MAC with IV */ |
| |
| if (axf->reinit) |
| { |
| axf->reinit(&ctx, iv, ivlen); |
| } |
| |
| /* Supply MAC with AAD */ |
| |
| aadlen = crda->crd_len; |
| /* Section 5 of RFC 4106 specifies that AAD construction consists of |
| * {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}. |
| * Unfortunately it doesn't follow a good example set in the Section |
| * 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the |
| * external (to the packet) memory buffer, is processed by the hash |
| * function in the end thus allowing to retain simple programming |
| * interfaces and avoid kludges like the one below. |
| */ |
| |
| if (crda->crd_flags & CRD_F_ESN) |
| { |
| aadlen += 4; |
| |
| /* SPI */ |
| |
| bcopy(buf + crda->crd_skip, blk, 4); |
| iskip = 4; /* loop below will start with an offset of 4 */ |
| |
| /* ESN */ |
| |
| bcopy(crda->crd_esn, blk + 4, 4); |
| oskip = iskip + 4; /* offset output buffer blk by 8 */ |
| } |
| |
| for (i = iskip; i < crda->crd_len; i += axf->hashsize) |
| { |
| len = MIN(crda->crd_len - i, axf->hashsize - oskip); |
| bcopy(buf + crda->crd_skip + i, blk + oskip, len); |
| bzero(blk + len + oskip, axf->hashsize - len - oskip); |
| axf->update(&ctx, blk, axf->hashsize); |
| oskip = 0; /* reset initial output offset */ |
| } |
| |
| if (exf->reinit) |
| { |
| exf->reinit((caddr_t)swe->sw_kschedule, iv); |
| } |
| |
| /* Do encryption/decryption with MAC */ |
| |
| for (i = 0; i < crde->crd_len; i += blksz) |
| { |
| len = MIN(crde->crd_len - i, blksz); |
| if (len < blksz) |
| { |
| bzero(blk, blksz); |
| } |
| |
| bcopy(buf + i, blk, len); |
| if (crde->crd_flags & CRD_F_ENCRYPT) |
| { |
| exf->encrypt((caddr_t)swe->sw_kschedule, blk); |
| axf->update(&ctx, blk, len); |
| } |
| else |
| { |
| axf->update(&ctx, blk, len); |
| exf->decrypt((caddr_t)swe->sw_kschedule, blk); |
| } |
| |
| bcopy(blk, crp->crp_dst + i, len); |
| } |
| |
| /* Do any required special finalization */ |
| |
| switch (crda->crd_alg) |
| { |
| case CRYPTO_AES_128_GMAC: |
| case CRYPTO_AES_192_GMAC: |
| case CRYPTO_AES_256_GMAC: |
| |
| /* length block */ |
| |
| bzero(blk, axf->hashsize); |
| blkp = (uint32_t *)blk + 1; |
| *blkp = htobe32(aadlen * 8); |
| blkp = (uint32_t *)blk + 3; |
| *blkp = htobe32(crde->crd_len * 8); |
| axf->update(&ctx, blk, axf->hashsize); |
| break; |
| |
| case CRYPTO_CHACHA20_POLY1305_MAC: |
| |
| /* length block */ |
| |
| bzero(blk, axf->hashsize); |
| blkp = (uint32_t *)blk; |
| *blkp = htole32(aadlen); |
| blkp = (uint32_t *)blk + 2; |
| *blkp = htole32(crde->crd_len); |
| axf->update(&ctx, blk, axf->hashsize); |
| break; |
| } |
| |
| /* Finalize MAC */ |
| |
| axf->final(aalg, &ctx); |
| |
| /* Inject the authentication data */ |
| |
| bcopy(aalg, crp->crp_mac, axf->authsize); |
| |
| return 0; |
| } |
| |
| /* Apply a compression/decompression algorithm */ |
| |
| int swcr_compdec(FAR struct cryptodesc *crd, FAR struct swcr_data *sw, |
| caddr_t buf, int outtype) |
| { |
| FAR uint8_t *data; |
| FAR uint8_t *out; |
| FAR const struct comp_algo *cxf; |
| uint32_t result; |
| |
| cxf = sw->sw_cxf; |
| |
| /* We must handle the whole buffer of data in one time |
| * then if there is not all the data in the mbuf, we must |
| * copy in a buffer. |
| */ |
| |
| data = kmm_malloc(crd->crd_len); |
| if (data == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| bcopy(buf + crd->crd_skip, data, crd->crd_len); |
| |
| if (crd->crd_flags & CRD_F_COMP) |
| { |
| result = cxf->compress(data, crd->crd_len, &out); |
| } |
| else |
| { |
| result = cxf->decompress(data, crd->crd_len, &out); |
| } |
| |
| kmm_free(data); |
| if (result == 0) |
| { |
| return -EINVAL; |
| } |
| |
| sw->sw_size = result; |
| |
| /* Check the compressed size when doing compression */ |
| |
| if (crd->crd_flags & CRD_F_COMP) |
| { |
| if (result > crd->crd_len) |
| { |
| /* Compression was useless, we lost time */ |
| |
| kmm_free(out); |
| return 0; |
| } |
| } |
| |
| bcopy(out, buf + crd->crd_skip, result); |
| kmm_free(out); |
| return 0; |
| } |
| |
| /* Generate a new software session. */ |
| |
| int swcr_newsession(FAR uint32_t *sid, FAR struct cryptoini *cri) |
| { |
| FAR struct swcr_data **swd; |
| FAR const struct auth_hash *axf; |
| FAR const struct enc_xform *txf; |
| uint32_t i; |
| int k; |
| |
| if (sid == NULL || cri == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| if (swcr_sessions) |
| { |
| for (i = 1; i < swcr_sesnum; i++) |
| { |
| if (swcr_sessions[i] == NULL) |
| { |
| break; |
| } |
| } |
| } |
| |
| if (swcr_sessions == NULL || i == swcr_sesnum) |
| { |
| if (swcr_sessions == NULL) |
| { |
| i = 1; /* We leave swcr_sessions[0] empty */ |
| swcr_sesnum = CRYPTO_SW_SESSIONS; |
| } |
| else |
| { |
| swcr_sesnum *= 2; |
| } |
| |
| swd = kmm_calloc(swcr_sesnum, sizeof(struct swcr_data *)); |
| if (swd == NULL) |
| { |
| /* Reset session number */ |
| |
| if (swcr_sesnum == CRYPTO_SW_SESSIONS) |
| { |
| swcr_sesnum = 0; |
| } |
| else |
| { |
| swcr_sesnum /= 2; |
| } |
| |
| return -ENOBUFS; |
| } |
| |
| /* Copy existing sessions */ |
| |
| if (swcr_sessions) |
| { |
| bcopy(swcr_sessions, swd, |
| (swcr_sesnum / 2) * sizeof(struct swcr_data *)); |
| kmm_free(swcr_sessions); |
| } |
| |
| swcr_sessions = swd; |
| } |
| |
| swd = &swcr_sessions[i]; |
| *sid = i; |
| |
| while (cri) |
| { |
| *swd = kmm_zalloc(sizeof(struct swcr_data)); |
| if (*swd == NULL) |
| { |
| swcr_freesession(i); |
| return -ENOBUFS; |
| } |
| |
| switch (cri->cri_alg) |
| { |
| case CRYPTO_3DES_CBC: |
| txf = &enc_xform_3des; |
| goto enccommon; |
| case CRYPTO_BLF_CBC: |
| txf = &enc_xform_blf; |
| goto enccommon; |
| case CRYPTO_CAST_CBC: |
| txf = &enc_xform_cast5; |
| goto enccommon; |
| case CRYPTO_AES_CBC: |
| txf = &enc_xform_aes; |
| goto enccommon; |
| case CRYPTO_AES_CTR: |
| txf = &enc_xform_aes_ctr; |
| goto enccommon; |
| case CRYPTO_AES_XTS: |
| txf = &enc_xform_aes_xts; |
| goto enccommon; |
| case CRYPTO_AES_GCM_16: |
| txf = &enc_xform_aes_gcm; |
| goto enccommon; |
| case CRYPTO_AES_GMAC: |
| txf = &enc_xform_aes_gmac; |
| (*swd)->sw_exf = txf; |
| break; |
| case CRYPTO_AES_OFB: |
| txf = &enc_xform_aes_ofb; |
| goto enccommon; |
| case CRYPTO_AES_CFB_8: |
| txf = &enc_xform_aes_cfb_8; |
| goto enccommon; |
| case CRYPTO_AES_CFB_128: |
| txf = &enc_xform_aes_cfb_128; |
| goto enccommon; |
| case CRYPTO_CHACHA20_POLY1305: |
| txf = &enc_xform_chacha20_poly1305; |
| goto enccommon; |
| case CRYPTO_NULL: |
| txf = &enc_xform_null; |
| goto enccommon; |
| enccommon: |
| if (txf->ctxsize > 0) |
| { |
| (*swd)->sw_kschedule = kmm_zalloc(txf->ctxsize); |
| if ((*swd)->sw_kschedule == NULL) |
| { |
| swcr_freesession(i); |
| return -EINVAL; |
| } |
| } |
| |
| if (cri->cri_klen / 8 > txf->maxkey || |
| cri->cri_klen / 8 < txf->minkey) |
| { |
| swcr_freesession(i); |
| return -EINVAL; |
| } |
| |
| if (txf->setkey((*swd)->sw_kschedule, |
| (FAR uint8_t *)cri->cri_key, |
| cri->cri_klen / 8) < 0) |
| { |
| swcr_freesession(i); |
| return -EINVAL; |
| } |
| |
| (*swd)->sw_exf = txf; |
| break; |
| |
| case CRYPTO_MD5_HMAC: |
| axf = &auth_hash_hmac_md5_96; |
| goto authcommon; |
| case CRYPTO_SHA1_HMAC: |
| axf = &auth_hash_hmac_sha1_96; |
| goto authcommon; |
| case CRYPTO_RIPEMD160_HMAC: |
| axf = &auth_hash_hmac_ripemd_160_96; |
| goto authcommon; |
| case CRYPTO_SHA2_256_HMAC: |
| axf = &auth_hash_hmac_sha2_256_128; |
| goto authcommon; |
| case CRYPTO_SHA2_384_HMAC: |
| axf = &auth_hash_hmac_sha2_384_192; |
| goto authcommon; |
| case CRYPTO_SHA2_512_HMAC: |
| axf = &auth_hash_hmac_sha2_512_256; |
| authcommon: |
| (*swd)->sw_ictx = kmm_malloc(axf->ctxsize); |
| if ((*swd)->sw_ictx == NULL) |
| { |
| swcr_freesession(i); |
| return -ENOBUFS; |
| } |
| |
| (*swd)->sw_octx = kmm_malloc(axf->ctxsize); |
| if ((*swd)->sw_octx == NULL) |
| { |
| swcr_freesession(i); |
| return -ENOBUFS; |
| } |
| |
| if (cri->cri_klen / 8 > axf->keysize) |
| { |
| swcr_freesession(i); |
| return -EINVAL; |
| } |
| |
| for (k = 0; k < cri->cri_klen / 8; k++) |
| { |
| cri->cri_key[k] ^= HMAC_IPAD_VAL; |
| } |
| |
| axf->init((*swd)->sw_ictx); |
| axf->update((*swd)->sw_ictx, (FAR uint8_t *)cri->cri_key, |
| cri->cri_klen / 8); |
| axf->update((*swd)->sw_ictx, hmac_ipad_buffer, |
| axf->blocksize - (cri->cri_klen / 8)); |
| |
| for (k = 0; k < cri->cri_klen / 8; k++) |
| { |
| cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); |
| } |
| |
| axf->init((*swd)->sw_octx); |
| axf->update((*swd)->sw_octx, (FAR uint8_t *)cri->cri_key, |
| cri->cri_klen / 8); |
| axf->update((*swd)->sw_octx, hmac_opad_buffer, |
| axf->blocksize - (cri->cri_klen / 8)); |
| |
| for (k = 0; k < cri->cri_klen / 8; k++) |
| { |
| cri->cri_key[k] ^= HMAC_OPAD_VAL; |
| } |
| |
| (*swd)->sw_axf = axf; |
| bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize); |
| break; |
| |
| case CRYPTO_MD5: |
| axf = &auth_hash_md5; |
| goto auth3common; |
| case CRYPTO_SHA1: |
| axf = &auth_hash_sha1; |
| goto auth3common; |
| case CRYPTO_SHA2_224: |
| axf = &auth_hash_sha2_224; |
| goto auth3common; |
| case CRYPTO_SHA2_256: |
| axf = &auth_hash_sha2_256; |
| goto auth3common; |
| case CRYPTO_SHA2_384: |
| axf = &auth_hash_sha2_384; |
| goto auth3common; |
| case CRYPTO_SHA2_512: |
| axf = &auth_hash_sha2_512; |
| |
| auth3common: |
| (*swd)->sw_ictx = kmm_zalloc(axf->ctxsize); |
| if ((*swd)->sw_ictx == NULL) |
| { |
| swcr_freesession(i); |
| return -ENOBUFS; |
| } |
| |
| axf->init((*swd)->sw_ictx); |
| (*swd)->sw_axf = axf; |
| bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize); |
| break; |
| |
| case CRYPTO_AES_128_GMAC: |
| axf = &auth_hash_gmac_aes_128; |
| goto auth4common; |
| |
| case CRYPTO_AES_192_GMAC: |
| axf = &auth_hash_gmac_aes_192; |
| goto auth4common; |
| |
| case CRYPTO_AES_256_GMAC: |
| axf = &auth_hash_gmac_aes_256; |
| goto auth4common; |
| |
| case CRYPTO_CHACHA20_POLY1305_MAC: |
| axf = &auth_hash_chacha20_poly1305; |
| |
| auth4common: |
| (*swd)->sw_ictx = kmm_malloc(axf->ctxsize); |
| if ((*swd)->sw_ictx == NULL) |
| { |
| swcr_freesession(i); |
| return -ENOBUFS; |
| } |
| |
| axf->init((*swd)->sw_ictx); |
| axf->setkey((*swd)->sw_ictx, (FAR uint8_t *)cri->cri_key, |
| cri->cri_klen / 8); |
| (*swd)->sw_axf = axf; |
| break; |
| |
| case CRYPTO_ESN: |
| |
| /* nothing to do */ |
| |
| break; |
| default: |
| swcr_freesession(i); |
| return -EINVAL; |
| } |
| |
| (*swd)->sw_alg = cri->cri_alg; |
| cri = cri->cri_next; |
| swd = &((*swd)->sw_next); |
| } |
| |
| return 0; |
| } |
| |
| /* Free a session. */ |
| |
| int swcr_freesession(uint64_t tid) |
| { |
| FAR struct swcr_data *swd; |
| FAR const struct enc_xform *txf; |
| FAR const struct auth_hash *axf; |
| uint32_t sid = ((uint32_t) tid) & 0xffffffff; |
| |
| if (sid > swcr_sesnum || swcr_sessions == NULL || |
| swcr_sessions[sid] == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| /* Silently accept and return */ |
| |
| if (sid == 0) |
| { |
| return 0; |
| } |
| |
| while ((swd = swcr_sessions[sid]) != NULL) |
| { |
| swcr_sessions[sid] = swd->sw_next; |
| |
| switch (swd->sw_alg) |
| { |
| case CRYPTO_3DES_CBC: |
| case CRYPTO_BLF_CBC: |
| case CRYPTO_CAST_CBC: |
| case CRYPTO_RIJNDAEL128_CBC: |
| case CRYPTO_AES_CTR: |
| case CRYPTO_AES_XTS: |
| case CRYPTO_AES_GCM_16: |
| case CRYPTO_AES_GMAC: |
| case CRYPTO_AES_OFB: |
| case CRYPTO_AES_CFB_8: |
| case CRYPTO_AES_CFB_128: |
| case CRYPTO_CHACHA20_POLY1305: |
| case CRYPTO_NULL: |
| txf = swd->sw_exf; |
| |
| if (swd->sw_kschedule) |
| { |
| explicit_bzero(swd->sw_kschedule, txf->ctxsize); |
| kmm_free(swd->sw_kschedule); |
| } |
| |
| break; |
| |
| case CRYPTO_MD5_HMAC: |
| case CRYPTO_SHA1_HMAC: |
| case CRYPTO_RIPEMD160_HMAC: |
| case CRYPTO_SHA2_256_HMAC: |
| case CRYPTO_SHA2_384_HMAC: |
| case CRYPTO_SHA2_512_HMAC: |
| axf = swd->sw_axf; |
| |
| if (swd->sw_ictx) |
| { |
| explicit_bzero(swd->sw_ictx, axf->ctxsize); |
| kmm_free(swd->sw_ictx); |
| } |
| |
| if (swd->sw_octx) |
| { |
| explicit_bzero(swd->sw_octx, axf->ctxsize); |
| kmm_free(swd->sw_octx); |
| } |
| |
| break; |
| |
| case CRYPTO_AES_128_GMAC: |
| case CRYPTO_AES_192_GMAC: |
| case CRYPTO_AES_256_GMAC: |
| case CRYPTO_CHACHA20_POLY1305_MAC: |
| case CRYPTO_MD5: |
| case CRYPTO_SHA1: |
| case CRYPTO_SHA2_224: |
| case CRYPTO_SHA2_256: |
| case CRYPTO_SHA2_384: |
| case CRYPTO_SHA2_512: |
| axf = swd->sw_axf; |
| |
| if (swd->sw_ictx) |
| { |
| explicit_bzero(swd->sw_ictx, axf->ctxsize); |
| kmm_free(swd->sw_ictx); |
| } |
| |
| break; |
| } |
| |
| kmm_free(swd); |
| } |
| |
| return 0; |
| } |
| |
| /* Process a software request. */ |
| |
| int swcr_process(struct cryptop *crp) |
| { |
| FAR const struct enc_xform *txf; |
| FAR struct cryptodesc *crd; |
| FAR struct swcr_data *sw; |
| uint32_t lid; |
| |
| /* Sanity check */ |
| |
| if (crp == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| if (crp->crp_desc == NULL || crp->crp_buf == NULL) |
| { |
| crp->crp_etype = -EINVAL; |
| goto done; |
| } |
| |
| lid = crp->crp_sid & 0xffffffff; |
| if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) |
| { |
| crp->crp_etype = -ENOENT; |
| goto done; |
| } |
| |
| /* Go through crypto descriptors, processing as we go */ |
| |
| for (crd = crp->crp_desc; crd; crd = crd->crd_next) |
| { |
| /* Find the crypto context. |
| * XXX Note that the logic here prevents us from having |
| * XXX the same algorithm multiple times in a session |
| * XXX (or rather, we can but it won't give us the right |
| * XXX results). To do that, we'd need some way of differentiating |
| * XXX between the various instances of an algorithm (so we can |
| * XXX locate the correct crypto context). |
| */ |
| |
| for (sw = swcr_sessions[lid]; |
| sw && sw->sw_alg != crd->crd_alg; |
| sw = sw->sw_next); |
| |
| /* No such context ? */ |
| |
| if (sw == NULL) |
| { |
| crp->crp_etype = -EINVAL; |
| goto done; |
| } |
| |
| switch (sw->sw_alg) |
| { |
| case CRYPTO_NULL: |
| { |
| break; |
| } |
| |
| case CRYPTO_3DES_CBC: |
| case CRYPTO_BLF_CBC: |
| case CRYPTO_CAST_CBC: |
| case CRYPTO_RIJNDAEL128_CBC: |
| case CRYPTO_AES_CTR: |
| case CRYPTO_AES_XTS: |
| case CRYPTO_AES_OFB: |
| case CRYPTO_AES_CFB_8: |
| case CRYPTO_AES_CFB_128: |
| txf = sw->sw_exf; |
| |
| if (crp->crp_iv) |
| { |
| if (!(crd->crd_flags & CRD_F_IV_EXPLICIT)) |
| { |
| bcopy(crp->crp_iv, crd->crd_iv, txf->ivsize); |
| crd->crd_flags |= CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT; |
| crd->crd_skip = 0; |
| } |
| } |
| else |
| { |
| crd->crd_flags |= CRD_F_IV_PRESENT; |
| crd->crd_skip = txf->blocksize; |
| crd->crd_len -= txf->blocksize; |
| } |
| |
| if ((crp->crp_etype = swcr_encdec(crp, crd, sw, |
| crp->crp_buf)) != 0) |
| { |
| goto done; |
| } |
| |
| break; |
| case CRYPTO_MD5_HMAC: |
| case CRYPTO_SHA1_HMAC: |
| case CRYPTO_RIPEMD160_HMAC: |
| case CRYPTO_SHA2_256_HMAC: |
| case CRYPTO_SHA2_384_HMAC: |
| case CRYPTO_SHA2_512_HMAC: |
| if ((crp->crp_etype = swcr_authcompute(crp, crd, sw, |
| crp->crp_buf)) != 0) |
| { |
| goto done; |
| } |
| |
| break; |
| |
| case CRYPTO_MD5: |
| case CRYPTO_SHA1: |
| case CRYPTO_SHA2_224: |
| case CRYPTO_SHA2_256: |
| case CRYPTO_SHA2_384: |
| case CRYPTO_SHA2_512: |
| if ((crp->crp_etype = swcr_hash(crp, crd, sw, |
| crp->crp_buf)) != 0) |
| { |
| goto done; |
| } |
| |
| break; |
| |
| case CRYPTO_AES_GCM_16: |
| case CRYPTO_AES_GMAC: |
| case CRYPTO_AES_128_GMAC: |
| case CRYPTO_AES_192_GMAC: |
| case CRYPTO_AES_256_GMAC: |
| case CRYPTO_CHACHA20_POLY1305: |
| case CRYPTO_CHACHA20_POLY1305_MAC: |
| crp->crp_etype = swcr_authenc(crp); |
| goto done; |
| break; |
| |
| default: |
| |
| /* Unknown/unsupported algorithm */ |
| |
| crp->crp_etype = -EINVAL; |
| goto done; |
| } |
| } |
| |
| done: |
| return 0; |
| } |
| |
| int swcr_rsa_verify(struct cryptkop *krp) |
| { |
| uint8_t *exp = (uint8_t *)krp->krp_param[0].crp_p; |
| uint8_t *modulus = (uint8_t *)krp->krp_param[1].crp_p; |
| uint8_t *sig = (uint8_t *)krp->krp_param[2].crp_p; |
| uint8_t *hash = (uint8_t *)krp->krp_param[3].crp_p; |
| uint8_t *padding = (uint8_t *)krp->krp_param[4].crp_p; |
| int exp_len = krp->krp_param[0].crp_nbits / 8; |
| int modulus_len = krp->krp_param[1].crp_nbits / 8; |
| int sig_len = krp->krp_param[2].crp_nbits / 8; |
| int hash_len = krp->krp_param[3].crp_nbits / 8; |
| int padding_len = krp->krp_param[4].crp_nbits / 8; |
| struct bn a; |
| struct bn e; |
| struct bn n; |
| struct bn r; |
| |
| bignum_init(&a); |
| bignum_init(&e); |
| bignum_init(&n); |
| bignum_init(&r); |
| memcpy(e.array, exp, exp_len); |
| memcpy(n.array, modulus, modulus_len); |
| memcpy(a.array, sig, sig_len); |
| pow_mod_faster(&a, &e, &n, &r); |
| return !!memcmp(r.array, hash, hash_len) + |
| !!memcmp(r.array + hash_len, padding, padding_len); |
| } |
| |
| int swcr_kprocess(struct cryptkop *krp) |
| { |
| /* Sanity check */ |
| |
| if (krp == NULL) |
| { |
| return -EINVAL; |
| } |
| |
| /* Go through crypto descriptors, processing as we go */ |
| |
| switch (krp->krp_op) |
| { |
| case CRK_RSA_PCKS15_VERIFY: |
| if ((krp->krp_status = swcr_rsa_verify(krp)) != 0) |
| { |
| goto done; |
| } |
| break; |
| default: |
| |
| /* Unknown/unsupported algorithm */ |
| |
| krp->krp_status = -EINVAL; |
| goto done; |
| } |
| |
| done: |
| return 0; |
| } |
| |
| /* Initialize the driver, called from the kernel main(). */ |
| |
| void swcr_init(void) |
| { |
| int algs[CRYPTO_ALGORITHM_MAX + 1]; |
| int kalgs[CRK_ALGORITHM_MAX + 1]; |
| int flags = CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_ENCRYPT_MAC | |
| CRYPTOCAP_F_MAC_ENCRYPT; |
| |
| swcr_id = crypto_get_driverid(flags); |
| if (swcr_id < 0) |
| { |
| /* This should never happen */ |
| |
| PANIC(); |
| } |
| |
| algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_RIJNDAEL128_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_OFB] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_CFB_8] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_AES_CFB_128] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_MD5] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA1] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA2_224] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA2_256] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA2_384] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_SHA2_512] = CRYPTO_ALG_FLAG_SUPPORTED; |
| algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED; |
| |
| crypto_register(swcr_id, algs, swcr_newsession, |
| swcr_freesession, swcr_process); |
| |
| kalgs[CRK_RSA_PCKS15_VERIFY] = CRYPTO_ALG_FLAG_SUPPORTED; |
| crypto_kregister(swcr_id, kalgs, swcr_kprocess); |
| } |