| /**************************************************************************** |
| * net/tcp/tcp_input.c |
| * Handling incoming TCP input |
| * |
| * Copyright (C) 2007-2014 Gregory Nutt. All rights reserved. |
| * Author: Gregory Nutt <gnutt@nuttx.org> |
| * |
| * Adapted for NuttX from logic in uIP which also has a BSD-like license: |
| * |
| * Original author Adam Dunkels <adam@dunkels.com> |
| * Copyright () 2001-2003, Adam Dunkels. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote |
| * products derived from this software without specific prior |
| * written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS |
| * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE |
| * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Included Files |
| ****************************************************************************/ |
| |
| #include <nuttx/config.h> |
| |
| #if defined(CONFIG_NET) && defined(CONFIG_NET_TCP) |
| |
| #include <stdint.h> |
| #include <string.h> |
| #include <debug.h> |
| |
| #include <nuttx/net/netconfig.h> |
| #include <nuttx/net/uip.h> |
| #include <nuttx/net/netdev.h> |
| |
| #include "uip/uip.h" |
| #include "tcp/tcp.h" |
| |
| /**************************************************************************** |
| * Pre-processor Definitions |
| ****************************************************************************/ |
| |
| #define BUF ((struct tcp_iphdr_s *)&dev->d_buf[UIP_LLH_LEN]) |
| |
| /**************************************************************************** |
| * Public Variables |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Variables |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Functions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Public Functions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Name: tcp_input |
| * |
| * Description: |
| * Handle incoming TCP input |
| * |
| * Parameters: |
| * dev - The device driver structure containing the received TCP packet. |
| * |
| * Return: |
| * None |
| * |
| * Assumptions: |
| * Called from the interrupt level or with interrupts disabled. |
| * |
| ****************************************************************************/ |
| |
| void tcp_input(struct uip_driver_s *dev) |
| { |
| struct tcp_conn_s *conn = NULL; |
| struct tcp_iphdr_s *pbuf = BUF; |
| uint16_t tmp16; |
| uint16_t flags; |
| uint8_t opt; |
| uint8_t result; |
| int len; |
| int i; |
| |
| dev->d_snddata = &dev->d_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN]; |
| dev->d_appdata = &dev->d_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN]; |
| |
| #ifdef CONFIG_NET_STATISTICS |
| uip_stat.tcp.recv++; |
| #endif |
| |
| /* Start of TCP input header processing code. */ |
| |
| if (tcp_chksum(dev) != 0xffff) |
| { |
| /* Compute and check the TCP checksum. */ |
| |
| #ifdef CONFIG_NET_STATISTICS |
| uip_stat.tcp.drop++; |
| uip_stat.tcp.chkerr++; |
| #endif |
| nlldbg("Bad TCP checksum\n"); |
| goto drop; |
| } |
| |
| /* Demultiplex this segment. First check any active connections. */ |
| |
| conn = tcp_active(pbuf); |
| if (conn) |
| { |
| /* We found an active connection.. Check for the subsequent SYN |
| * arriving in UIP_SYN_RCVD state after the SYNACK packet was |
| * lost. To avoid other issues, reset any active connection |
| * where a SYN arrives in a state != UIP_SYN_RCVD. |
| */ |
| |
| if ((conn->tcpstateflags & UIP_TS_MASK) != UIP_SYN_RCVD && |
| (BUF->flags & TCP_CTL) == TCP_SYN) |
| { |
| goto reset; |
| } |
| else |
| { |
| goto found; |
| } |
| } |
| |
| /* If we didn't find and active connection that expected the packet, |
| * either (1) this packet is an old duplicate, or (2) this is a SYN packet |
| * destined for a connection in LISTEN. If the SYN flag isn't set, |
| * it is an old packet and we send a RST. |
| */ |
| |
| if ((pbuf->flags & TCP_CTL) == TCP_SYN) |
| { |
| /* This is a SYN packet for a connection. Find the connection |
| * listening on this port. |
| */ |
| |
| tmp16 = pbuf->destport; |
| if (tcp_islistener(tmp16)) |
| { |
| /* We matched the incoming packet with a connection in LISTEN. |
| * We now need to create a new connection and send a SYNACK in |
| * response. |
| */ |
| |
| /* First allocate a new connection structure and see if there is any |
| * user application to accept it. |
| */ |
| |
| conn = tcp_alloc_accept(pbuf); |
| if (conn) |
| { |
| /* The connection structure was successfully allocated. Now see if |
| * there is an application waiting to accept the connection (or at |
| * least queue it it for acceptance). |
| */ |
| |
| conn->crefs = 1; |
| if (tcp_accept_connection(dev, conn, tmp16) != OK) |
| { |
| /* No, then we have to give the connection back and drop the packet */ |
| |
| conn->crefs = 0; |
| tcp_free(conn); |
| conn = NULL; |
| } |
| } |
| |
| if (!conn) |
| { |
| /* Either (1) all available connections are in use, or (2) there is no |
| * application in place to accept the connection. We drop packet and hope that |
| * the remote end will retransmit the packet at a time when we |
| * have more spare connections or someone waiting to accept the connection. |
| */ |
| |
| #ifdef CONFIG_NET_STATISTICS |
| uip_stat.tcp.syndrop++; |
| #endif |
| nlldbg("No free TCP connections\n"); |
| goto drop; |
| } |
| |
| uip_incr32(conn->rcvseq, 1); |
| |
| /* Parse the TCP MSS option, if present. */ |
| |
| if ((pbuf->tcpoffset & 0xf0) > 0x50) |
| { |
| for (i = 0; i < ((pbuf->tcpoffset >> 4) - 5) << 2 ;) |
| { |
| opt = dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + i]; |
| if (opt == TCP_OPT_END) |
| { |
| /* End of options. */ |
| |
| break; |
| } |
| else if (opt == TCP_OPT_NOOP) |
| { |
| /* NOP option. */ |
| |
| ++i; |
| } |
| else if (opt == TCP_OPT_MSS && |
| dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + i] == TCP_OPT_MSS_LEN) |
| { |
| /* An MSS option with the right option length. */ |
| |
| tmp16 = ((uint16_t)dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + i] << 8) | |
| (uint16_t)dev->d_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + i]; |
| conn->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16; |
| |
| /* And we are done processing options. */ |
| |
| break; |
| } |
| else |
| { |
| /* All other options have a length field, so that we easily |
| * can skip past them. |
| */ |
| |
| if (dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + i] == 0) |
| { |
| /* If the length field is zero, the options are malformed |
| * and we don't process them further. |
| */ |
| |
| break; |
| } |
| i += dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + i]; |
| } |
| } |
| } |
| |
| /* Our response will be a SYNACK. */ |
| |
| tcp_ack(dev, conn, TCP_ACK | TCP_SYN); |
| return; |
| } |
| } |
| |
| /* This is (1) an old duplicate packet or (2) a SYN packet but with |
| * no matching listener found. Send RST packet in either case. |
| */ |
| |
| reset: |
| |
| /* We do not send resets in response to resets. */ |
| |
| if ((pbuf->flags & TCP_RST) != 0) |
| { |
| goto drop; |
| } |
| |
| #ifdef CONFIG_NET_STATISTICS |
| uip_stat.tcp.synrst++; |
| #endif |
| tcp_reset(dev); |
| return; |
| |
| found: |
| |
| /* Update the connection's window size */ |
| |
| conn->winsize = ((uint16_t)pbuf->wnd[0] << 8) + (uint16_t)pbuf->wnd[1]; |
| |
| flags = 0; |
| |
| /* We do a very naive form of TCP reset processing; we just accept |
| * any RST and kill our connection. We should in fact check if the |
| * sequence number of this reset is within our advertised window |
| * before we accept the reset. |
| */ |
| |
| if ((pbuf->flags & TCP_RST) != 0) |
| { |
| conn->tcpstateflags = UIP_CLOSED; |
| nlldbg("RESET - TCP state: UIP_CLOSED\n"); |
| |
| (void)tcp_callback(dev, conn, UIP_ABORT); |
| goto drop; |
| } |
| |
| /* Calculated the length of the data, if the application has sent |
| * any data to us. |
| */ |
| |
| len = (pbuf->tcpoffset >> 4) << 2; |
| |
| /* d_len will contain the length of the actual TCP data. This is |
| * calculated by subtracting the length of the TCP header (in |
| * len) and the length of the IP header (20 bytes). |
| */ |
| |
| dev->d_len -= (len + UIP_IPH_LEN); |
| |
| /* First, check if the sequence number of the incoming packet is |
| * what we're expecting next. If not, we send out an ACK with the |
| * correct numbers in, unless we are in the SYN_RCVD state and |
| * receive a SYN, in which case we should retransmit our SYNACK |
| * (which is done further down). |
| */ |
| |
| if (!((((conn->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) && |
| ((pbuf->flags & TCP_CTL) == (TCP_SYN | TCP_ACK))) || |
| (((conn->tcpstateflags & UIP_TS_MASK) == UIP_SYN_RCVD) && |
| ((pbuf->flags & TCP_CTL) == TCP_SYN)))) |
| { |
| if ((dev->d_len > 0 || ((pbuf->flags & (TCP_SYN | TCP_FIN)) != 0)) && |
| memcmp(pbuf->seqno, conn->rcvseq, 4) != 0) |
| { |
| tcp_send(dev, conn, TCP_ACK, UIP_IPTCPH_LEN); |
| return; |
| } |
| } |
| |
| /* Next, check if the incoming segment acknowledges any outstanding |
| * data. If so, we update the sequence number, reset the length of |
| * the outstanding data, calculate RTT estimations, and reset the |
| * retransmission timer. |
| */ |
| |
| if ((pbuf->flags & TCP_ACK) != 0 && conn->unacked > 0) |
| { |
| uint32_t unackseq; |
| uint32_t ackseq; |
| |
| /* The next sequence number is equal to the current sequence |
| * number (sndseq) plus the size of the outstanding, unacknowledged |
| * data (unacked). |
| */ |
| |
| #ifdef CONFIG_NET_TCP_WRITE_BUFFERS |
| unackseq = conn->isn + conn->sent; |
| #else |
| unackseq = tcp_addsequence(conn->sndseq, conn->unacked); |
| #endif |
| |
| /* Get the sequence number of that has just been acknowledged by this |
| * incoming packet. |
| */ |
| |
| ackseq = tcp_getsequence(pbuf->ackno); |
| |
| /* Check how many of the outstanding bytes have been acknowledged. For |
| * a most uIP send operation, this should always be true. However, |
| * the send() API sends data ahead when it can without waiting for |
| * the ACK. In this case, the 'ackseq' could be less than then the |
| * new sequence number. |
| */ |
| |
| if (ackseq <= unackseq) |
| { |
| /* Calculate the new number of outstanding, unacknowledged bytes */ |
| |
| conn->unacked = unackseq - ackseq; |
| } |
| else |
| { |
| /* What would it mean if ackseq > unackseq? The peer has ACKed |
| * more bytes than we think we have sent? Someone has lost it. |
| * Complain and reset the number of outstanding, unacknowledged |
| * bytes |
| */ |
| |
| if ((conn->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) |
| { |
| nlldbg("ERROR: conn->sndseq %d, conn->unacked %d\n", |
| tcp_getsequence(conn->sndseq), conn->unacked); |
| goto reset; |
| } |
| } |
| |
| /* Update sequence number to the unacknowledge sequence number. If |
| * there is still outstanding, unacknowledged data, then this will |
| * be beyond ackseq. |
| */ |
| |
| nllvdbg("sndseq: %08x->%08x unackseq: %08x new unacked: %d\n", |
| conn->sndseq, ackseq, unackseq, conn->unacked); |
| tcp_setsequence(conn->sndseq, ackseq); |
| |
| /* Do RTT estimation, unless we have done retransmissions. */ |
| |
| if (conn->nrtx == 0) |
| { |
| signed char m; |
| m = conn->rto - conn->timer; |
| |
| /* This is taken directly from VJs original code in his paper */ |
| |
| m = m - (conn->sa >> 3); |
| conn->sa += m; |
| if (m < 0) |
| { |
| m = -m; |
| } |
| |
| m = m - (conn->sv >> 2); |
| conn->sv += m; |
| conn->rto = (conn->sa >> 3) + conn->sv; |
| } |
| |
| /* Set the acknowledged flag. */ |
| |
| flags |= UIP_ACKDATA; |
| |
| /* Reset the retransmission timer. */ |
| |
| conn->timer = conn->rto; |
| } |
| |
| /* Do different things depending on in what state the connection is. */ |
| |
| switch (conn->tcpstateflags & UIP_TS_MASK) |
| { |
| /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not |
| * implemented, since we force the application to close when the |
| * peer sends a FIN (hence the application goes directly from |
| * ESTABLISHED to LAST_ACK). |
| */ |
| |
| case UIP_SYN_RCVD: |
| /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and |
| * we are waiting for an ACK that acknowledges the data we sent |
| * out the last time. Therefore, we want to have the UIP_ACKDATA |
| * flag set. If so, we enter the ESTABLISHED state. |
| */ |
| |
| if ((flags & UIP_ACKDATA) != 0) |
| { |
| conn->tcpstateflags = UIP_ESTABLISHED; |
| |
| #ifdef CONFIG_NET_TCP_WRITE_BUFFERS |
| conn->isn = tcp_getsequence(pbuf->ackno); |
| tcp_setsequence(conn->sndseq, conn->isn); |
| conn->sent = 0; |
| #endif |
| conn->unacked = 0; |
| flags = UIP_CONNECTED; |
| nllvdbg("TCP state: UIP_ESTABLISHED\n"); |
| |
| if (dev->d_len > 0) |
| { |
| flags |= UIP_NEWDATA; |
| uip_incr32(conn->rcvseq, dev->d_len); |
| } |
| |
| dev->d_sndlen = 0; |
| result = tcp_callback(dev, conn, flags); |
| tcp_appsend(dev, conn, result); |
| return; |
| } |
| |
| /* We need to retransmit the SYNACK */ |
| |
| if ((pbuf->flags & TCP_CTL) == TCP_SYN) |
| { |
| tcp_ack(dev, conn, TCP_ACK | TCP_SYN); |
| return; |
| } |
| |
| goto drop; |
| |
| case UIP_SYN_SENT: |
| /* In SYN_SENT, we wait for a SYNACK that is sent in response to |
| * our SYN. The rcvseq is set to sequence number in the SYNACK |
| * plus one, and we send an ACK. We move into the ESTABLISHED |
| * state. |
| */ |
| |
| if ((flags & UIP_ACKDATA) != 0 && (pbuf->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)) |
| { |
| /* Parse the TCP MSS option, if present. */ |
| |
| if ((pbuf->tcpoffset & 0xf0) > 0x50) |
| { |
| for (i = 0; i < ((pbuf->tcpoffset >> 4) - 5) << 2 ;) |
| { |
| opt = dev->d_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + i]; |
| if (opt == TCP_OPT_END) |
| { |
| /* End of options. */ |
| |
| break; |
| } |
| else if (opt == TCP_OPT_NOOP) |
| { |
| /* NOP option. */ |
| |
| ++i; |
| } |
| else if (opt == TCP_OPT_MSS && |
| dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + i] == TCP_OPT_MSS_LEN) |
| { |
| /* An MSS option with the right option length. */ |
| |
| tmp16 = |
| (dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + i] << 8) | |
| dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + i]; |
| conn->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16; |
| |
| /* And we are done processing options. */ |
| |
| break; |
| } |
| else |
| { |
| /* All other options have a length field, so that we |
| * easily can skip past them. |
| */ |
| |
| if (dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + i] == 0) |
| { |
| /* If the length field is zero, the options are |
| * malformed and we don't process them further. |
| */ |
| |
| break; |
| } |
| i += dev->d_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + i]; |
| } |
| } |
| } |
| |
| conn->tcpstateflags = UIP_ESTABLISHED; |
| memcpy(conn->rcvseq, pbuf->seqno, 4); |
| |
| uip_incr32(conn->rcvseq, 1); |
| conn->unacked = 0; |
| |
| #ifdef CONFIG_NET_TCP_WRITE_BUFFERS |
| conn->isn = tcp_getsequence(pbuf->ackno); |
| tcp_setsequence(conn->sndseq, conn->isn); |
| #endif |
| dev->d_len = 0; |
| dev->d_sndlen = 0; |
| |
| nllvdbg("TCP state: UIP_ESTABLISHED\n"); |
| result = tcp_callback(dev, conn, UIP_CONNECTED | UIP_NEWDATA); |
| tcp_appsend(dev, conn, result); |
| return; |
| } |
| |
| /* Inform the application that the connection failed */ |
| |
| (void)tcp_callback(dev, conn, UIP_ABORT); |
| |
| /* The connection is closed after we send the RST */ |
| |
| conn->tcpstateflags = UIP_CLOSED; |
| nllvdbg("Connection failed - TCP state: UIP_CLOSED\n"); |
| |
| /* We do not send resets in response to resets. */ |
| |
| if ((pbuf->flags & TCP_RST) != 0) |
| { |
| goto drop; |
| } |
| |
| tcp_reset(dev); |
| return; |
| |
| case UIP_ESTABLISHED: |
| /* In the ESTABLISHED state, we call upon the application to feed |
| * data into the d_buf. If the UIP_ACKDATA flag is set, the |
| * application should put new data into the buffer, otherwise we are |
| * retransmitting an old segment, and the application should put that |
| * data into the buffer. |
| * |
| * If the incoming packet is a FIN, we should close the connection on |
| * this side as well, and we send out a FIN and enter the LAST_ACK |
| * state. We require that there is no outstanding data; otherwise the |
| * sequence numbers will be screwed up. |
| */ |
| |
| if ((pbuf->flags & TCP_FIN) != 0 && (conn->tcpstateflags & UIP_STOPPED) == 0) |
| { |
| /* Needs to be investigated further. |
| * Windows often sends FIN packets together with the last ACK for |
| * the received data. So the socket layer has to get this ACK even |
| * if the connection is going to be closed. |
| */ |
| #if 0 |
| if (conn->unacked > 0) |
| { |
| goto drop; |
| } |
| #endif |
| |
| /* Update the sequence number and indicate that the connection has |
| * been closed. |
| */ |
| |
| uip_incr32(conn->rcvseq, dev->d_len + 1); |
| flags |= UIP_CLOSE; |
| |
| if (dev->d_len > 0) |
| { |
| flags |= UIP_NEWDATA; |
| } |
| |
| (void)tcp_callback(dev, conn, flags); |
| |
| conn->tcpstateflags = UIP_LAST_ACK; |
| conn->unacked = 1; |
| conn->nrtx = 0; |
| nllvdbg("TCP state: UIP_LAST_ACK\n"); |
| |
| tcp_send(dev, conn, TCP_FIN | TCP_ACK, UIP_IPTCPH_LEN); |
| return; |
| } |
| |
| /* Check the URG flag. If this is set, the segment carries urgent |
| * data that we must pass to the application. |
| */ |
| |
| if ((pbuf->flags & TCP_URG) != 0) |
| { |
| #ifdef CONFIG_NET_TCPURGDATA |
| dev->d_urglen = (pbuf->urgp[0] << 8) | pbuf->urgp[1]; |
| if (dev->d_urglen > dev->d_len) |
| { |
| /* There is more urgent data in the next segment to come. */ |
| |
| dev->d_urglen = dev->d_len; |
| } |
| |
| uip_incr32(conn->rcvseq, dev->d_urglen); |
| dev->d_len -= dev->d_urglen; |
| dev->d_urgdata = dev->d_appdata; |
| dev->d_appdata += dev->d_urglen; |
| } |
| else |
| { |
| dev->d_urglen = 0; |
| #else /* CONFIG_NET_TCPURGDATA */ |
| dev->d_appdata = ((uint8_t*)dev->d_appdata) + ((pbuf->urgp[0] << 8) | pbuf->urgp[1]); |
| dev->d_len -= (pbuf->urgp[0] << 8) | pbuf->urgp[1]; |
| #endif /* CONFIG_NET_TCPURGDATA */ |
| } |
| |
| /* If d_len > 0 we have TCP data in the packet, and we flag this |
| * by setting the UIP_NEWDATA flag. If the application has stopped |
| * the data flow using uip_stop(), we must not accept any data |
| * packets from the remote host. |
| */ |
| |
| if (dev->d_len > 0 && (conn->tcpstateflags & UIP_STOPPED) == 0) |
| { |
| flags |= UIP_NEWDATA; |
| } |
| |
| /* If this packet constitutes an ACK for outstanding data (flagged |
| * by the UIP_ACKDATA flag), we should call the application since it |
| * might want to send more data. If the incoming packet had data |
| * from the peer (as flagged by the UIP_NEWDATA flag), the |
| * application must also be notified. |
| * |
| * When the application is called, the d_len field |
| * contains the length of the incoming data. The application can |
| * access the incoming data through the global pointer |
| * d_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN |
| * bytes into the d_buf array. |
| * |
| * If the application wishes to send any data, this data should be |
| * put into the d_appdata and the length of the data should be |
| * put into d_len. If the application don't have any data to |
| * send, d_len must be set to 0. |
| */ |
| |
| if ((flags & (UIP_NEWDATA | UIP_ACKDATA)) != 0) |
| { |
| /* Clear sndlen and remember the size in d_len. The application |
| * may modify d_len and we will need this value later when we |
| * update the sequence number. |
| */ |
| |
| dev->d_sndlen = 0; |
| len = dev->d_len; |
| |
| /* Provide the packet to the application */ |
| |
| result = tcp_callback(dev, conn, flags); |
| |
| /* If the application successfully handled the incoming data, |
| * then UIP_SNDACK will be set in the result. In this case, |
| * we need to update the sequence number. The ACK will be |
| * send by tcp_appsend(). |
| */ |
| |
| if ((result & UIP_SNDACK) != 0) |
| { |
| /* Update the sequence number using the saved length */ |
| |
| uip_incr32(conn->rcvseq, len); |
| } |
| |
| /* Send the response, ACKing the data or not, as appropriate */ |
| |
| tcp_appsend(dev, conn, result); |
| return; |
| } |
| |
| goto drop; |
| |
| case UIP_LAST_ACK: |
| /* We can close this connection if the peer has acknowledged our |
| * FIN. This is indicated by the UIP_ACKDATA flag. |
| */ |
| |
| if ((flags & UIP_ACKDATA) != 0) |
| { |
| conn->tcpstateflags = UIP_CLOSED; |
| nllvdbg("UIP_LAST_ACK TCP state: UIP_CLOSED\n"); |
| |
| (void)tcp_callback(dev, conn, UIP_CLOSE); |
| } |
| break; |
| |
| case UIP_FIN_WAIT_1: |
| /* The application has closed the connection, but the remote host |
| * hasn't closed its end yet. Thus we stay in the FIN_WAIT_1 state |
| * until we receive a FIN from the remote. |
| */ |
| |
| if (dev->d_len > 0) |
| { |
| uip_incr32(conn->rcvseq, dev->d_len); |
| } |
| |
| if ((pbuf->flags & TCP_FIN) != 0) |
| { |
| if ((flags & UIP_ACKDATA) != 0) |
| { |
| conn->tcpstateflags = UIP_TIME_WAIT; |
| conn->timer = 0; |
| conn->unacked = 0; |
| nllvdbg("TCP state: UIP_TIME_WAIT\n"); |
| } |
| else |
| { |
| conn->tcpstateflags = UIP_CLOSING; |
| nllvdbg("TCP state: UIP_CLOSING\n"); |
| } |
| |
| uip_incr32(conn->rcvseq, 1); |
| (void)tcp_callback(dev, conn, UIP_CLOSE); |
| tcp_send(dev, conn, TCP_ACK, UIP_IPTCPH_LEN); |
| return; |
| } |
| else if ((flags & UIP_ACKDATA) != 0) |
| { |
| conn->tcpstateflags = UIP_FIN_WAIT_2; |
| conn->unacked = 0; |
| nllvdbg("TCP state: UIP_FIN_WAIT_2\n"); |
| goto drop; |
| } |
| |
| if (dev->d_len > 0) |
| { |
| tcp_send(dev, conn, TCP_ACK, UIP_IPTCPH_LEN); |
| return; |
| } |
| |
| goto drop; |
| |
| case UIP_FIN_WAIT_2: |
| if (dev->d_len > 0) |
| { |
| uip_incr32(conn->rcvseq, dev->d_len); |
| } |
| |
| if ((pbuf->flags & TCP_FIN) != 0) |
| { |
| conn->tcpstateflags = UIP_TIME_WAIT; |
| conn->timer = 0; |
| nllvdbg("TCP state: UIP_TIME_WAIT\n"); |
| |
| uip_incr32(conn->rcvseq, 1); |
| (void)tcp_callback(dev, conn, UIP_CLOSE); |
| tcp_send(dev, conn, TCP_ACK, UIP_IPTCPH_LEN); |
| return; |
| } |
| |
| if (dev->d_len > 0) |
| { |
| tcp_send(dev, conn, TCP_ACK, UIP_IPTCPH_LEN); |
| return; |
| } |
| |
| goto drop; |
| |
| case UIP_TIME_WAIT: |
| tcp_send(dev, conn, TCP_ACK, UIP_IPTCPH_LEN); |
| return; |
| |
| case UIP_CLOSING: |
| if ((flags & UIP_ACKDATA) != 0) |
| { |
| conn->tcpstateflags = UIP_TIME_WAIT; |
| conn->timer = 0; |
| nllvdbg("TCP state: UIP_TIME_WAIT\n"); |
| } |
| |
| default: |
| break; |
| } |
| |
| drop: |
| dev->d_len = 0; |
| } |
| |
| #endif /* CONFIG_NET && CONFIG_NET_TCP */ |