| /************************************************************************************ |
| * drivers/mtd/m25px.c |
| * Driver for SPI-based M25P1 (128Kbit), M25P64 (32Mbit), M25P64 (64Mbit), and |
| * M25P128 (128Mbit) FLASH (and compatible). |
| * |
| * Copyright (C) 2009-2011, 2013 Gregory Nutt. All rights reserved. |
| * Author: Gregory Nutt <gnutt@nuttx.org> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * 3. Neither the name NuttX nor the names of its contributors may be |
| * used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| ************************************************************************************/ |
| |
| /************************************************************************************ |
| * Included Files |
| ************************************************************************************/ |
| |
| #include <nuttx/config.h> |
| |
| #include <sys/types.h> |
| #include <stdint.h> |
| #include <stdbool.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <debug.h> |
| |
| #include <nuttx/kmalloc.h> |
| #include <nuttx/fs/ioctl.h> |
| #include <nuttx/spi/spi.h> |
| #include <nuttx/mtd/mtd.h> |
| |
| /************************************************************************************ |
| * Pre-processor Definitions |
| ************************************************************************************/ |
| /* Configuration ********************************************************************/ |
| /* Per the data sheet, M25P10 parts can be driven with either SPI mode 0 (CPOL=0 and |
| * CPHA=0) or mode 3 (CPOL=1 and CPHA=1). But I have heard that other devices can |
| * operated in mode 0 or 1. So you may need to specify CONFIG_M25P_SPIMODE to |
| * select the best mode for your device. If CONFIG_M25P_SPIMODE is not defined, |
| * mode 0 will be used. |
| */ |
| |
| #ifndef CONFIG_M25P_SPIMODE |
| # define CONFIG_M25P_SPIMODE SPIDEV_MODE0 |
| #endif |
| |
| /* Various manufacturers may have produced the parts. 0x20 is the manufacturer ID |
| * for the STMicro MP25x serial FLASH. If, for example, you are using the a Macronix |
| * International MX25 serial FLASH, the correct manufacturer ID would be 0xc2. |
| */ |
| |
| #ifndef CONFIG_M25P_MANUFACTURER |
| # define CONFIG_M25P_MANUFACTURER 0x20 |
| #endif |
| |
| #ifndef CONFIG_M25P_MEMORY_TYPE |
| # define CONFIG_M25P_MEMORY_TYPE 0x20 |
| #endif |
| |
| /* M25P Registers *******************************************************************/ |
| /* Indentification register values */ |
| |
| #define M25P_MANUFACTURER CONFIG_M25P_MANUFACTURER |
| #define M25P_MEMORY_TYPE CONFIG_M25P_MEMORY_TYPE |
| #define M25P_RES_ID 0x13 |
| #define M25P_M25P1_CAPACITY 0x11 /* 1 M-bit */ |
| #define M25P_EN25F80_CAPACITY 0x14 /* 8 M-bit */ |
| #define M25P_M25P32_CAPACITY 0x16 /* 32 M-bit */ |
| #define M25P_M25P64_CAPACITY 0x17 /* 64 M-bit */ |
| #define M25P_M25P128_CAPACITY 0x18 /* 128 M-bit */ |
| |
| /* M25P1 capacity is 131,072 bytes: |
| * (4 sectors) * (32,768 bytes per sector) |
| * (512 pages) * (256 bytes per page) |
| */ |
| |
| #define M25P_M25P1_SECTOR_SHIFT 15 /* Sector size 1 << 15 = 65,536 */ |
| #define M25P_M25P1_NSECTORS 4 |
| #define M25P_M25P1_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ |
| #define M25P_M25P1_NPAGES 512 |
| |
| /* EN25F80 capacity is 1,048,576 bytes: |
| * (16 sectors) * (65,536 bytes per sector) |
| * (512 pages) * (256 bytes per page) |
| */ |
| |
| #define M25P_EN25F80_SECTOR_SHIFT 16 /* Sector size 1 << 15 = 65,536 */ |
| #define M25P_EN25F80_NSECTORS 16 |
| #define M25P_EN25F80_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ |
| #define M25P_EN25F80_NPAGES 4096 |
| #define M25P_EN25F80_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */ |
| #define M25P_EN25F80_NSUBSECTORS 256 |
| |
| /* M25P32 capacity is 4,194,304 bytes: |
| * (64 sectors) * (65,536 bytes per sector) |
| * (16384 pages) * (256 bytes per page) |
| */ |
| |
| #define M25P_M25P32_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ |
| #define M25P_M25P32_NSECTORS 64 |
| #define M25P_M25P32_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ |
| #define M25P_M25P32_NPAGES 16384 |
| |
| /* M25P64 capacity is 8,338,608 bytes: |
| * (128 sectors) * (65,536 bytes per sector) |
| * (32768 pages) * (256 bytes per page) |
| */ |
| |
| #define M25P_M25P64_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ |
| #define M25P_M25P64_NSECTORS 128 |
| #define M25P_M25P64_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ |
| #define M25P_M25P64_NPAGES 32768 |
| |
| /* M25P128 capacity is 16,777,216 bytes: |
| * (64 sectors) * (262,144 bytes per sector) |
| * (65536 pages) * (256 bytes per page) |
| */ |
| |
| #define M25P_M25P128_SECTOR_SHIFT 18 /* Sector size 1 << 18 = 262,144 */ |
| #define M25P_M25P128_NSECTORS 64 |
| #define M25P_M25P128_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ |
| #define M25P_M25P128_NPAGES 65536 |
| |
| /* Instructions */ |
| /* Command Value N Description Addr Dummy Data */ |
| #define M25P_WREN 0x06 /* 1 Write Enable 0 0 0 */ |
| #define M25P_WRDI 0x04 /* 1 Write Disable 0 0 0 */ |
| #define M25P_RDID 0x9f /* 1 Read Identification 0 0 1-3 */ |
| #define M25P_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */ |
| #define M25P_WRSR 0x01 /* 1 Write Status Register 0 0 1 */ |
| #define M25P_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */ |
| #define M25P_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */ |
| #define M25P_PP 0x02 /* 1 Page Program 3 0 1-256 */ |
| #define M25P_SE 0xd8 /* 1 Sector Erase 3 0 0 */ |
| #define M25P_BE 0xc7 /* 1 Bulk Erase 0 0 0 */ |
| #define M25P_DP 0xb9 /* 2 Deep power down 0 0 0 */ |
| #define M25P_RES 0xab /* 2 Read Electronic Signature 0 3 >=1 */ |
| #define M25P_SSE 0x20 /* 3 Sub-Sector Erase 0 0 0 */ |
| |
| /* NOTE 1: All parts. |
| * NOTE 2: M25P632/M25P64 |
| * NOTE 3: EN25F80. In EN25F80 terminology, 0xd8 is a block erase and 0x20 |
| * is a sector erase. |
| */ |
| |
| /* Status register bit definitions */ |
| |
| #define M25P_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */ |
| #define M25P_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ |
| #define M25P_SR_BP_SHIFT (2) /* Bits 2-4: Block protect bits */ |
| #define M25P_SR_BP_MASK (7 << M25P_SR_BP_SHIFT) |
| # define M25P_SR_BP_NONE (0 << M25P_SR_BP_SHIFT) /* Unprotected */ |
| # define M25P_SR_BP_UPPER64th (1 << M25P_SR_BP_SHIFT) /* Upper 64th */ |
| # define M25P_SR_BP_UPPER32nd (2 << M25P_SR_BP_SHIFT) /* Upper 32nd */ |
| # define M25P_SR_BP_UPPER16th (3 << M25P_SR_BP_SHIFT) /* Upper 16th */ |
| # define M25P_SR_BP_UPPER8th (4 << M25P_SR_BP_SHIFT) /* Upper 8th */ |
| # define M25P_SR_BP_UPPERQTR (5 << M25P_SR_BP_SHIFT) /* Upper quarter */ |
| # define M25P_SR_BP_UPPERHALF (6 << M25P_SR_BP_SHIFT) /* Upper half */ |
| # define M25P_SR_BP_ALL (7 << M25P_SR_BP_SHIFT) /* All sectors */ |
| /* Bits 5-6: Unused, read zero */ |
| #define M25P_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */ |
| |
| #define M25P_DUMMY 0xa5 |
| |
| /************************************************************************************ |
| * Private Types |
| ************************************************************************************/ |
| |
| /* This type represents the state of the MTD device. The struct mtd_dev_s |
| * must appear at the beginning of the definition so that you can freely |
| * cast between pointers to struct mtd_dev_s and struct m25p_dev_s. |
| */ |
| |
| struct m25p_dev_s |
| { |
| struct mtd_dev_s mtd; /* MTD interface */ |
| FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ |
| uint8_t sectorshift; /* 16 or 18 */ |
| uint8_t pageshift; /* 8 */ |
| uint16_t nsectors; /* 128 or 64 */ |
| uint32_t npages; /* 32,768 or 65,536 */ |
| #ifdef CONFIG_M25P_SUBSECTOR_ERASE |
| uint8_t subsectorshift; /* 0, 12 or 13 (4K or 8K) */ |
| #endif |
| }; |
| |
| /************************************************************************************ |
| * Private Function Prototypes |
| ************************************************************************************/ |
| |
| /* Helpers */ |
| |
| static void m25p_lock(FAR struct spi_dev_s *dev); |
| static inline void m25p_unlock(FAR struct spi_dev_s *dev); |
| static inline int m25p_readid(struct m25p_dev_s *priv); |
| static void m25p_waitwritecomplete(struct m25p_dev_s *priv); |
| static void m25p_writeenable(struct m25p_dev_s *priv); |
| static inline void m25p_sectorerase(struct m25p_dev_s *priv, off_t offset, uint8_t type); |
| static inline int m25p_bulkerase(struct m25p_dev_s *priv); |
| static inline void m25p_pagewrite(struct m25p_dev_s *priv, FAR const uint8_t *buffer, |
| off_t offset); |
| |
| /* MTD driver methods */ |
| |
| static int m25p_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); |
| static ssize_t m25p_bread(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks, FAR uint8_t *buf); |
| static ssize_t m25p_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, |
| size_t nblocks, FAR const uint8_t *buf); |
| static ssize_t m25p_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, |
| FAR uint8_t *buffer); |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| static ssize_t m25p_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, |
| FAR const uint8_t *buffer); |
| #endif |
| static int m25p_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); |
| |
| /************************************************************************************ |
| * Private Data |
| ************************************************************************************/ |
| |
| /************************************************************************************ |
| * Private Functions |
| ************************************************************************************/ |
| |
| /************************************************************************************ |
| * Name: m25p_lock |
| ************************************************************************************/ |
| |
| static void m25p_lock(FAR struct spi_dev_s *dev) |
| { |
| /* On SPI busses where there are multiple devices, it will be necessary to |
| * lock SPI to have exclusive access to the busses for a sequence of |
| * transfers. The bus should be locked before the chip is selected. |
| * |
| * This is a blocking call and will not return until we have exclusiv access to |
| * the SPI buss. We will retain that exclusive access until the bus is unlocked. |
| */ |
| |
| (void)SPI_LOCK(dev, true); |
| |
| /* After locking the SPI bus, the we also need call the setfrequency, setbits, and |
| * setmode methods to make sure that the SPI is properly configured for the device. |
| * If the SPI buss is being shared, then it may have been left in an incompatible |
| * state. |
| */ |
| |
| SPI_SETMODE(dev, CONFIG_M25P_SPIMODE); |
| SPI_SETBITS(dev, 8); |
| (void)SPI_SETFREQUENCY(dev, 20000000); |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_unlock |
| ************************************************************************************/ |
| |
| static inline void m25p_unlock(FAR struct spi_dev_s *dev) |
| { |
| (void)SPI_LOCK(dev, false); |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_readid |
| ************************************************************************************/ |
| |
| static inline int m25p_readid(struct m25p_dev_s *priv) |
| { |
| uint16_t manufacturer; |
| uint16_t memory; |
| uint16_t capacity; |
| |
| fvdbg("priv: %p\n", priv); |
| |
| /* Lock the SPI bus, configure the bus, and select this FLASH part. */ |
| |
| m25p_lock(priv->dev); |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send the "Read ID (RDID)" command and read the first three ID bytes */ |
| |
| (void)SPI_SEND(priv->dev, M25P_RDID); |
| manufacturer = SPI_SEND(priv->dev, M25P_DUMMY); |
| memory = SPI_SEND(priv->dev, M25P_DUMMY); |
| capacity = SPI_SEND(priv->dev, M25P_DUMMY); |
| |
| /* Deselect the FLASH and unlock the bus */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| m25p_unlock(priv->dev); |
| |
| fvdbg("manufacturer: %02x memory: %02x capacity: %02x\n", |
| manufacturer, memory, capacity); |
| |
| /* Check for a valid manufacturer and memory type */ |
| |
| if (manufacturer == M25P_MANUFACTURER && memory == M25P_MEMORY_TYPE) |
| { |
| /* Okay.. is it a FLASH capacity that we understand? */ |
| |
| #ifdef CONFIG_M25P_SUBSECTOR_ERASE |
| priv->subsectorshift = 0; |
| #endif |
| |
| if (capacity == M25P_M25P1_CAPACITY) |
| { |
| /* Save the FLASH geometry */ |
| |
| priv->sectorshift = M25P_M25P1_SECTOR_SHIFT; |
| priv->nsectors = M25P_M25P1_NSECTORS; |
| priv->pageshift = M25P_M25P1_PAGE_SHIFT; |
| priv->npages = M25P_M25P1_NPAGES; |
| return OK; |
| } |
| else if (capacity == M25P_EN25F80_CAPACITY) |
| { |
| /* Save the FLASH geometry */ |
| |
| priv->pageshift = M25P_EN25F80_PAGE_SHIFT; |
| priv->npages = M25P_EN25F80_NPAGES; |
| priv->sectorshift = M25P_EN25F80_SECTOR_SHIFT; |
| priv->nsectors = M25P_EN25F80_NSECTORS; |
| #ifdef CONFIG_M25P_SUBSECTOR_ERASE |
| priv->subsectorshift = M25P_EN25F80_SUBSECT_SHIFT; |
| #endif |
| return OK; |
| } |
| else if (capacity == M25P_M25P32_CAPACITY) |
| { |
| /* Save the FLASH geometry */ |
| |
| priv->sectorshift = M25P_M25P32_SECTOR_SHIFT; |
| priv->nsectors = M25P_M25P32_NSECTORS; |
| priv->pageshift = M25P_M25P32_PAGE_SHIFT; |
| priv->npages = M25P_M25P32_NPAGES; |
| return OK; |
| } |
| else if (capacity == M25P_M25P64_CAPACITY) |
| { |
| /* Save the FLASH geometry */ |
| |
| priv->sectorshift = M25P_M25P64_SECTOR_SHIFT; |
| priv->nsectors = M25P_M25P64_NSECTORS; |
| priv->pageshift = M25P_M25P64_PAGE_SHIFT; |
| priv->npages = M25P_M25P64_NPAGES; |
| return OK; |
| } |
| else if (capacity == M25P_M25P128_CAPACITY) |
| { |
| /* Save the FLASH geometry */ |
| |
| priv->sectorshift = M25P_M25P128_SECTOR_SHIFT; |
| priv->nsectors = M25P_M25P128_NSECTORS; |
| priv->pageshift = M25P_M25P128_PAGE_SHIFT; |
| priv->npages = M25P_M25P128_NPAGES; |
| return OK; |
| } |
| } |
| |
| return -ENODEV; |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_waitwritecomplete |
| ************************************************************************************/ |
| |
| static void m25p_waitwritecomplete(struct m25p_dev_s *priv) |
| { |
| uint8_t status; |
| |
| /* Are we the only device on the bus? */ |
| |
| #ifdef CONFIG_SPI_OWNBUS |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send "Read Status Register (RDSR)" command */ |
| |
| (void)SPI_SEND(priv->dev, M25P_RDSR); |
| |
| /* Loop as long as the memory is busy with a write cycle */ |
| |
| do |
| { |
| /* Send a dummy byte to generate the clock needed to shift out the status */ |
| |
| status = SPI_SEND(priv->dev, M25P_DUMMY); |
| } |
| while ((status & M25P_SR_WIP) != 0); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| |
| #else |
| |
| /* Loop as long as the memory is busy with a write cycle */ |
| |
| do |
| { |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send "Read Status Register (RDSR)" command */ |
| |
| (void)SPI_SEND(priv->dev, M25P_RDSR); |
| |
| /* Send a dummy byte to generate the clock needed to shift out the status */ |
| |
| status = SPI_SEND(priv->dev, M25P_DUMMY); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| |
| /* Given that writing could take up to few tens of milliseconds, and erasing |
| * could take more. The following short delay in the "busy" case will allow |
| * other peripherals to access the SPI bus. |
| */ |
| |
| if ((status & M25P_SR_WIP) != 0) |
| { |
| m25p_unlock(priv->dev); |
| usleep(1000); |
| m25p_lock(priv->dev); |
| } |
| } |
| while ((status & M25P_SR_WIP) != 0); |
| #endif |
| |
| fvdbg("Complete\n"); |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_writeenable |
| ************************************************************************************/ |
| |
| static void m25p_writeenable(struct m25p_dev_s *priv) |
| { |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send "Write Enable (WREN)" command */ |
| |
| (void)SPI_SEND(priv->dev, M25P_WREN); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| fvdbg("Enabled\n"); |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_sectorerase |
| ************************************************************************************/ |
| |
| static void m25p_sectorerase(struct m25p_dev_s *priv, off_t sector, uint8_t type) |
| { |
| off_t offset; |
| |
| #ifdef CONFIG_M25P_SUBSECTOR_ERASE |
| if (priv->subsectorshift > 0) |
| { |
| offset = sector << priv->subsectorshift; |
| } |
| else |
| #endif |
| { |
| offset = sector << priv->sectorshift; |
| } |
| |
| fvdbg("sector: %08lx\n", (long)sector); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| m25p_waitwritecomplete(priv); |
| |
| /* Send write enable instruction */ |
| |
| m25p_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction |
| * that was passed in as the erase type. |
| */ |
| |
| (void)SPI_SEND(priv->dev, type); |
| |
| /* Send the sector offset high byte first. For all of the supported |
| * parts, the sector number is completely contained in the first byte |
| * and the values used in the following two bytes don't really matter. |
| */ |
| |
| (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| (void)SPI_SEND(priv->dev, offset & 0xff); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| fvdbg("Erased\n"); |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_bulkerase |
| ************************************************************************************/ |
| |
| static inline int m25p_bulkerase(struct m25p_dev_s *priv) |
| { |
| fvdbg("priv: %p\n", priv); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| m25p_waitwritecomplete(priv); |
| |
| /* Send write enable instruction */ |
| |
| m25p_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send the "Bulk Erase (BE)" instruction */ |
| |
| (void)SPI_SEND(priv->dev, M25P_BE); |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| fvdbg("Return: OK\n"); |
| return OK; |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_pagewrite |
| ************************************************************************************/ |
| |
| static inline void m25p_pagewrite(struct m25p_dev_s *priv, FAR const uint8_t *buffer, |
| off_t page) |
| { |
| off_t offset = page << priv->pageshift; |
| |
| fvdbg("page: %08lx offset: %08lx\n", (long)page, (long)offset); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| m25p_waitwritecomplete(priv); |
| |
| /* Enable the write access to the FLASH */ |
| |
| m25p_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send "Page Program (PP)" command */ |
| |
| (void)SPI_SEND(priv->dev, M25P_PP); |
| |
| /* Send the page offset high byte first. */ |
| |
| (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| (void)SPI_SEND(priv->dev, offset & 0xff); |
| |
| /* Then write the specified number of bytes */ |
| |
| SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift); |
| |
| /* Deselect the FLASH: Chip Select high */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| fvdbg("Written\n"); |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_bytewrite |
| ************************************************************************************/ |
| |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| static inline void m25p_bytewrite(struct m25p_dev_s *priv, FAR const uint8_t *buffer, |
| off_t offset, uint16_t count) |
| { |
| fvdbg("offset: %08lx count:%d\n", (long)offset, count); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| m25p_waitwritecomplete(priv); |
| |
| /* Enable the write access to the FLASH */ |
| |
| m25p_writeenable(priv); |
| |
| /* Select this FLASH part */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send "Page Program (PP)" command */ |
| |
| (void)SPI_SEND(priv->dev, M25P_PP); |
| |
| /* Send the page offset high byte first. */ |
| |
| (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| (void)SPI_SEND(priv->dev, offset & 0xff); |
| |
| /* Then write the specified number of bytes */ |
| |
| SPI_SNDBLOCK(priv->dev, buffer, count); |
| |
| /* Deselect the FLASH: Chip Select high */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| fvdbg("Written\n"); |
| } |
| #endif |
| |
| /************************************************************************************ |
| * Name: m25p_erase |
| ************************************************************************************/ |
| |
| static int m25p_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) |
| { |
| FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; |
| size_t blocksleft = nblocks; |
| |
| fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
| |
| /* Lock access to the SPI bus until we complete the erase */ |
| |
| m25p_lock(priv->dev); |
| while (blocksleft > 0) |
| { |
| #ifdef CONFIG_M25P_SUBSECTOR_ERASE |
| size_t sectorboundry; |
| size_t blkper; |
| |
| /* If we have a smaller erase size, then we will find as many full |
| * sector erase blocks as possible to speed up the process instead of |
| * erasing everything in smaller chunks. |
| */ |
| |
| if (priv->subsectorshift > 0) |
| { |
| blkper = 1 << (priv->sectorshift - priv->subsectorshift); |
| sectorboundry = (startblock + blkper - 1) / blkper; |
| sectorboundry *= blkper; |
| |
| /* If we are on a sector boundry and have at least a full sector |
| * of blocks left to erase, then we can do a full sector erase. |
| */ |
| |
| if (startblock == sectorboundry && blocksleft >= blkper) |
| { |
| /* Do a full sector erase */ |
| |
| m25p_sectorerase(priv, startblock, M25P_SE); |
| startblock += blkper; |
| blocksleft -= blkper; |
| continue; |
| } |
| else |
| { |
| /* Just do a sub-sector erase */ |
| |
| m25p_sectorerase(priv, startblock, M25P_SSE); |
| startblock++; |
| blocksleft--; |
| continue; |
| } |
| } |
| #endif |
| |
| /* Not using sub-sector erase. Erase each full sector */ |
| |
| m25p_sectorerase(priv, startblock, M25P_SE); |
| startblock++; |
| blocksleft--; |
| } |
| |
| m25p_unlock(priv->dev); |
| return (int)nblocks; |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_bread |
| ************************************************************************************/ |
| |
| static ssize_t m25p_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, |
| FAR uint8_t *buffer) |
| { |
| FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; |
| ssize_t nbytes; |
| |
| fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
| |
| /* On this device, we can handle the block read just like the byte-oriented read */ |
| |
| nbytes = m25p_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); |
| if (nbytes > 0) |
| { |
| return nbytes >> priv->pageshift; |
| } |
| |
| return (int)nbytes; |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_bwrite |
| ************************************************************************************/ |
| |
| static ssize_t m25p_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, |
| FAR const uint8_t *buffer) |
| { |
| FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; |
| size_t blocksleft = nblocks; |
| size_t pagesize = 1 << priv->pageshift; |
| |
| fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
| |
| /* Lock the SPI bus and write each page to FLASH */ |
| |
| m25p_lock(priv->dev); |
| while (blocksleft-- > 0) |
| { |
| m25p_pagewrite(priv, buffer, startblock); |
| buffer += pagesize; |
| startblock++; |
| } |
| |
| m25p_unlock(priv->dev); |
| return nblocks; |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_read |
| ************************************************************************************/ |
| |
| static ssize_t m25p_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, |
| FAR uint8_t *buffer) |
| { |
| FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; |
| |
| fvdbg("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); |
| |
| /* Wait for any preceding write to complete. We could simplify things by |
| * perform this wait at the end of each write operation (rather than at |
| * the beginning of ALL operations), but have the wait first will slightly |
| * improve performance. |
| */ |
| |
| m25p_waitwritecomplete(priv); |
| |
| /* Lock the SPI bus and select this FLASH part */ |
| |
| m25p_lock(priv->dev); |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
| |
| /* Send "Read from Memory " instruction */ |
| |
| (void)SPI_SEND(priv->dev, M25P_READ); |
| |
| /* Send the page offset high byte first. */ |
| |
| (void)SPI_SEND(priv->dev, (offset >> 16) & 0xff); |
| (void)SPI_SEND(priv->dev, (offset >> 8) & 0xff); |
| (void)SPI_SEND(priv->dev, offset & 0xff); |
| |
| /* Then read all of the requested bytes */ |
| |
| SPI_RECVBLOCK(priv->dev, buffer, nbytes); |
| |
| /* Deselect the FLASH and unlock the SPI bus */ |
| |
| SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
| m25p_unlock(priv->dev); |
| fvdbg("return nbytes: %d\n", (int)nbytes); |
| return nbytes; |
| } |
| |
| /************************************************************************************ |
| * Name: m25p_write |
| ************************************************************************************/ |
| |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| static ssize_t m25p_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, |
| FAR const uint8_t *buffer) |
| { |
| FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; |
| int startpage; |
| int endpage; |
| int count; |
| int index; |
| int pagesize; |
| int bytestowrite; |
| |
| fvdbg("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); |
| |
| /* We must test if the offset + count crosses one or more pages |
| * and perform individual writes. The devices can only write in |
| * page increments. |
| */ |
| |
| startpage = offset / (1 << priv->pageshift); |
| endpage = (offset + nbytes) / (1 << priv->pageshift); |
| |
| if (startpage == endpage) |
| { |
| /* All bytes within one programmable page. Just do the write. */ |
| |
| m25p_bytewrite(priv, buffer, offset, nbytes); |
| } |
| else |
| { |
| /* Write the 1st partial-page */ |
| |
| count = nbytes; |
| pagesize = (1 << priv->pageshift); |
| bytestowrite = pagesize - (offset & (pagesize-1)); |
| m25p_bytewrite(priv, buffer, offset, bytestowrite); |
| |
| /* Update offset and count */ |
| |
| offset += bytestowrite; |
| count -= bytestowrite; |
| index = bytestowrite; |
| |
| /* Write full pages */ |
| |
| while (count >= pagesize) |
| { |
| m25p_bytewrite(priv, &buffer[index], offset, pagesize); |
| |
| /* Update offset and count */ |
| |
| offset += pagesize; |
| count -= pagesize; |
| index += pagesize; |
| } |
| |
| /* Now write any partial page at the end */ |
| |
| if (count > 0) |
| { |
| m25p_bytewrite(priv, &buffer[index], offset, count); |
| } |
| } |
| |
| return nbytes; |
| } |
| #endif /* CONFIG_MTD_BYTE_WRITE */ |
| |
| /************************************************************************************ |
| * Name: m25p_ioctl |
| ************************************************************************************/ |
| |
| static int m25p_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) |
| { |
| FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; |
| int ret = -EINVAL; /* Assume good command with bad parameters */ |
| |
| fvdbg("cmd: %d \n", cmd); |
| |
| switch (cmd) |
| { |
| case MTDIOC_GEOMETRY: |
| { |
| FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); |
| if (geo) |
| { |
| /* Populate the geometry structure with information need to know |
| * the capacity and how to access the device. |
| * |
| * NOTE: that the device is treated as though it where just an array |
| * of fixed size blocks. That is most likely not true, but the client |
| * will expect the device logic to do whatever is necessary to make it |
| * appear so. |
| */ |
| |
| geo->blocksize = (1 << priv->pageshift); |
| #ifdef CONFIG_M25P_SUBSECTOR_ERASE |
| if (priv->subsectorshift > 0) |
| { |
| geo->erasesize = (1 << priv->subsectorshift); |
| geo->neraseblocks = priv->nsectors * (1 << (priv->sectorshift - |
| priv->subsectorshift)); |
| } |
| else |
| #endif |
| { |
| geo->erasesize = (1 << priv->sectorshift); |
| geo->neraseblocks = priv->nsectors; |
| } |
| |
| ret = OK; |
| |
| fvdbg("blocksize: %d erasesize: %d neraseblocks: %d\n", |
| geo->blocksize, geo->erasesize, geo->neraseblocks); |
| } |
| } |
| break; |
| |
| case MTDIOC_BULKERASE: |
| { |
| /* Erase the entire device */ |
| |
| m25p_lock(priv->dev); |
| ret = m25p_bulkerase(priv); |
| m25p_unlock(priv->dev); |
| } |
| break; |
| |
| case MTDIOC_XIPBASE: |
| default: |
| ret = -ENOTTY; /* Bad command */ |
| break; |
| } |
| |
| fvdbg("return %d\n", ret); |
| return ret; |
| } |
| |
| /************************************************************************************ |
| * Public Functions |
| ************************************************************************************/ |
| |
| /************************************************************************************ |
| * Name: m25p_initialize |
| * |
| * Description: |
| * Create an initialize MTD device instance. MTD devices are not registered |
| * in the file system, but are created as instances that can be bound to |
| * other functions (such as a block or character driver front end). |
| * |
| ************************************************************************************/ |
| |
| FAR struct mtd_dev_s *m25p_initialize(FAR struct spi_dev_s *dev) |
| { |
| FAR struct m25p_dev_s *priv; |
| int ret; |
| |
| fvdbg("dev: %p\n", dev); |
| |
| /* Allocate a state structure (we allocate the structure instead of using |
| * a fixed, static allocation so that we can handle multiple FLASH devices. |
| * The current implementation would handle only one FLASH part per SPI |
| * device (only because of the SPIDEV_FLASH definition) and so would have |
| * to be extended to handle multiple FLASH parts on the same SPI bus. |
| */ |
| |
| priv = (FAR struct m25p_dev_s *)kzalloc(sizeof(struct m25p_dev_s)); |
| if (priv) |
| { |
| /* Initialize the allocated structure. (unsupported methods were |
| * nullified by kzalloc). |
| */ |
| |
| priv->mtd.erase = m25p_erase; |
| priv->mtd.bread = m25p_bread; |
| priv->mtd.bwrite = m25p_bwrite; |
| priv->mtd.read = m25p_read; |
| #ifdef CONFIG_MTD_BYTE_WRITE |
| priv->mtd.write = m25p_write; |
| #endif |
| priv->mtd.ioctl = m25p_ioctl; |
| priv->dev = dev; |
| |
| /* Deselect the FLASH */ |
| |
| SPI_SELECT(dev, SPIDEV_FLASH, false); |
| |
| /* Identify the FLASH chip and get its capacity */ |
| |
| ret = m25p_readid(priv); |
| if (ret != OK) |
| { |
| /* Unrecognized! Discard all of that work we just did and return NULL */ |
| |
| fdbg("Unrecognized\n"); |
| kfree(priv); |
| priv = NULL; |
| } |
| } |
| |
| /* Register the MTD with the procfs system if enabled */ |
| |
| #ifdef CONFIG_MTD_REGISTRATION |
| mtd_register(&priv->mtd, "m25px"); |
| #endif |
| |
| /* Return the implementation-specific state structure as the MTD device */ |
| |
| fvdbg("Return %p\n", priv); |
| return (FAR struct mtd_dev_s *)priv; |
| } |