| /**************************************************************************** |
| * examples/dsptest/test_motor.c |
| * |
| * Copyright (C) 2018 Gregory Nutt. All rights reserved. |
| * Author: Mateusz Szafoni <raiden00@railab.me> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * 3. Neither the name NuttX nor the names of its contributors may be |
| * used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Included Files |
| ****************************************************************************/ |
| |
| #include "dsptest.h" |
| |
| /**************************************************************************** |
| * Pre-processor Definitions |
| ****************************************************************************/ |
| |
| /* Set float precision for this module */ |
| |
| #undef UNITY_FLOAT_PRECISION |
| #define UNITY_FLOAT_PRECISION (0.0001f) |
| |
| /**************************************************************************** |
| * Private Types |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Function Protototypes |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Data |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Private Functions |
| ****************************************************************************/ |
| |
| /* Initialize openloop */ |
| |
| static void test_openloop_init(void) |
| { |
| struct openloop_data_s op; |
| float angle = 0.0; |
| float max_speed = 100; |
| float per = 10e-6; |
| |
| /* Initialize openlooop controller */ |
| |
| motor_openloop_init(&op, max_speed, per); |
| |
| /* Get openloop angle */ |
| |
| angle = motor_openloop_angle_get(&op); |
| |
| /* Test values after initialization */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(0.0, angle); |
| TEST_ASSERT_EQUAL_FLOAT(per, op.per); |
| TEST_ASSERT_EQUAL_FLOAT(max_speed, op.max); |
| } |
| |
| /* Single step openloop */ |
| |
| static void test_openloop_one_step(void) |
| { |
| struct openloop_data_s op; |
| float expected = 0.0; |
| float angle = 0.0; |
| float max_speed = 100; |
| float speed = 10; |
| float per = 10e-6; |
| |
| /* Initialize openlooop controller */ |
| |
| motor_openloop_init(&op, max_speed, per); |
| |
| /* Do single iteration in CW direction */ |
| |
| motor_openloop(&op, speed, DIR_CW); |
| |
| /* Get openloop angle */ |
| |
| angle = motor_openloop_angle_get(&op); |
| |
| /* Get expected value */ |
| |
| expected = speed * per; |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected, angle); |
| |
| /* Do single iteration in CCW direction */ |
| |
| motor_openloop(&op, speed, DIR_CCW); |
| |
| /* Get openloop angle */ |
| |
| angle = motor_openloop_angle_get(&op); |
| |
| /* Get expected value */ |
| |
| expected = 0.0; |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected, angle); |
| } |
| |
| /* Many steps in openloop */ |
| |
| static void test_openloop_many_steps(void) |
| { |
| struct openloop_data_s op; |
| float expected = 0.0; |
| float angle = 0.0; |
| float max_speed = 100; |
| float speed = 10; |
| float per = 50e-6; |
| int iter = 10; |
| int i = 0; |
| |
| /* Initialize openlooop controller */ |
| |
| motor_openloop_init(&op, max_speed, per); |
| |
| /* Do some iterations in CW direction */ |
| |
| for (i = 0; i < iter; i += 1) |
| { |
| motor_openloop(&op, speed, DIR_CW); |
| } |
| |
| /* Get openloop angle */ |
| |
| angle = motor_openloop_angle_get(&op); |
| |
| /* Get expected value */ |
| |
| expected = speed * per * iter; |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected, angle); |
| |
| /* Do some iterations in CCW direction */ |
| |
| for (i = 0; i < iter; i += 1) |
| { |
| motor_openloop(&op, speed, DIR_CCW); |
| } |
| |
| /* Get openloop angle */ |
| |
| angle = motor_openloop_angle_get(&op); |
| |
| /* We should return to 0 */ |
| |
| expected = 0.0; |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected, angle); |
| } |
| |
| /* Test maximum openloop speed */ |
| |
| static void test_openloop_max_speed(void) |
| { |
| TEST_IGNORE_MESSAGE("not implemented"); |
| } |
| |
| /* Normalize angle in openloop */ |
| |
| static void test_openloop_normalize_angle(void) |
| { |
| struct openloop_data_s op; |
| float expected = 0.0; |
| float angle = 0.0; |
| float max_speed = 100; |
| float speed = 10; |
| float per = 10e-6; |
| int iter = 1000; |
| int i = 0; |
| |
| /* Initialize openlooop controller */ |
| |
| motor_openloop_init(&op, max_speed, per); |
| |
| /* Do many iterations to exceed 2PI range */ |
| |
| for (i = 0; i < iter; i += 1) |
| { |
| motor_openloop(&op, speed, DIR_CW); |
| } |
| |
| /* Get openloop angle */ |
| |
| angle = motor_openloop_angle_get(&op); |
| |
| /* Get expected value */ |
| |
| expected = speed * per * iter; |
| |
| /* And normalize to <0.0, 2*PI> */ |
| |
| while (expected > 2 * M_PI_F) |
| { |
| expected -= 2 * M_PI_F; |
| } |
| |
| /* Test angle */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected, angle); |
| } |
| |
| /* Initialize otor angle */ |
| |
| static void test_angle_init(void) |
| { |
| struct motor_angle_s angle; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| uint8_t p = 0; |
| |
| /* Initialize motor angle */ |
| |
| p = 32; |
| motor_angle_init(&angle, p); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test initial values */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(0.0, angle_e); |
| TEST_ASSERT_EQUAL_FLOAT(0.0, angle_m); |
| TEST_ASSERT_EQUAL_UINT8(p, angle.p); |
| TEST_ASSERT_EQUAL_FLOAT((float)1.0 / p, angle.one_by_p); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| } |
| |
| /* Update electrical angle in CW direction */ |
| |
| static void test_angle_el_update_cw(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 8; |
| motor_angle_init(&angle, p); |
| |
| /* Update electrical angle with 0.0 */ |
| |
| angle_step = 0.0; |
| expected_e = 0.0; |
| expected_m = 0.0; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| motor_angle_e_update(&angle, angle_step, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| |
| /* Update electrical angle with 0.1 */ |
| |
| angle_step = 0.1; |
| expected_e = 0.1; |
| expected_m = 0.1 / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| motor_angle_e_update(&angle, angle_step, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| |
| /* Update electrical angle with 2*PI + 0.2 in three steps. |
| * This should increase pole counter in angle structure by 1. |
| */ |
| |
| angle_step = 2 * M_PI_F + 0.2; |
| expected_e = 0.2; |
| expected_m = angle_step / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_e_update(&angle, M_PI_F, DIR_CW); |
| motor_angle_e_update(&angle, 2 * M_PI_F, DIR_CW); |
| motor_angle_e_update(&angle, 0.2, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(1, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| } |
| |
| /* Update electrical angle in CCW direction */ |
| |
| static void test_angle_el_update_ccw(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 8; |
| motor_angle_init(&angle, p); |
| |
| /* Move angle 0.1 in CCW direction from 0.0. |
| * We start from 0.0 and move angle CCW by 0.1. |
| */ |
| |
| angle_step = MOTOR_ANGLE_E_MAX - 0.1; |
| expected_e = angle_step; |
| expected_m = (p - 1) * MOTOR_ANGLE_M_MAX / p + expected_e / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| motor_angle_e_update(&angle, angle_step, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(p - 1, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| |
| /* Update electrical angle with 2PI+0.1 in CCW direction in three steps */ |
| |
| angle_step = (MOTOR_ANGLE_E_MAX + 0.1); |
| expected_e = MOTOR_ANGLE_E_MAX - 0.1; |
| expected_m = (p - 2) * MOTOR_ANGLE_M_MAX / p + expected_e / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - M_PI_F, DIR_CCW); |
| motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - 2 * M_PI_F, DIR_CCW); |
| motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - 0.1, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(p - 2, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| } |
| |
| /* Update electrical angle and overflow electrical angle in CW direction */ |
| |
| static void test_angle_el_update_cw_overflow(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| float a = 0.0; |
| int i = 0; |
| |
| /* Initialize motor angle */ |
| |
| p = 8; |
| motor_angle_init(&angle, p); |
| |
| /* Update electrical angle to achieve full mechanical rotation */ |
| |
| angle_step = 0.1; |
| expected_e = angle_step; |
| expected_m = angle_step / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move angle in loop */ |
| |
| for (i = 0; i < p; i += 1) |
| { |
| for (a = 0.0; a <= MOTOR_ANGLE_E_MAX; a += angle_step) |
| { |
| motor_angle_e_update(&angle, a, DIR_CW); |
| } |
| } |
| |
| /* Test poles counter before final step */ |
| |
| TEST_ASSERT_EQUAL_INT8(p - 1, angle.i); |
| |
| /* One more step after overflow mechanical angle */ |
| |
| a = angle_step; |
| motor_angle_e_update(&angle, a, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| } |
| |
| /* Update electrical angle and overflow electrical angle in CCW direction */ |
| |
| static void test_angle_el_update_ccw_overflow(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| float a = 0.0; |
| int i = 0; |
| |
| /* Initialize motor angle */ |
| |
| p = 8; |
| motor_angle_init(&angle, p); |
| |
| /* Update electrical angle to achieve full mechanical rotation */ |
| |
| angle_step = 0.1; |
| expected_e = MOTOR_ANGLE_E_MAX - angle_step; |
| expected_m = MOTOR_ANGLE_M_MAX - angle_step / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move angle in loop */ |
| |
| for (i = 0; i < p; i += 1) |
| { |
| for (a = MOTOR_ANGLE_E_MAX; a >= 0.0; a -= angle_step) |
| { |
| motor_angle_e_update(&angle, a, DIR_CCW); |
| } |
| } |
| |
| /* Test poles counter before final step */ |
| |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| |
| /* One more step after overflow mechanical angle */ |
| |
| a = MOTOR_ANGLE_E_MAX - 0.1; |
| motor_angle_e_update(&angle, a, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(7, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| } |
| |
| /* Update electric angle and change direction */ |
| |
| static void test_angle_el_change_dir(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| int i = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| float a = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 7; |
| motor_angle_init(&angle, p); |
| |
| /* Move electrical angle with 4*(2PI) + 0.1. |
| * It give us pole counter = 4 |
| */ |
| |
| angle_step = 0.1; |
| expected_m = 4 * MOTOR_ANGLE_M_MAX / p + angle_step / p; |
| expected_e = 0.1; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move angle in loop */ |
| |
| for (i = 0; i < 4; i += 1) |
| { |
| for (a = 0.0; a <= MOTOR_ANGLE_E_MAX; a += angle_step) |
| { |
| motor_angle_e_update(&angle, a, DIR_CW); |
| } |
| } |
| |
| /* Test poles counter before final step */ |
| |
| TEST_ASSERT_EQUAL_INT8(3, angle.i); |
| |
| /* And rest 0.1 */ |
| |
| motor_angle_e_update(&angle, angle_step, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(4, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| |
| /* Now move angle backward 2*(2PI) + 0.1 */ |
| |
| angle_step = 0.1; |
| expected_m = 2 * MOTOR_ANGLE_M_MAX / p - angle_step / p; |
| expected_e = MOTOR_ANGLE_E_MAX - angle_step; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move angle in loop */ |
| |
| for (i = 0; i < 2; i += 1) |
| { |
| for (a = angle_m; a >= 0.0; a -= angle_step) |
| { |
| motor_angle_e_update(&angle, a, DIR_CCW); |
| } |
| } |
| |
| /* Test poles counter before final step */ |
| |
| TEST_ASSERT_EQUAL_INT8(2, angle.i); |
| |
| /* And rest 0.1 */ |
| |
| motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - angle_step, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(1, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| |
| /* and again in forward direction 4*(2PI) + 0.1 */ |
| |
| angle_step = 0.1; |
| expected_m = 5 * MOTOR_ANGLE_M_MAX / p + angle_step / p; |
| expected_e = 0.1; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move angle in loop */ |
| |
| for (i = 0; i < 4; i += 1) |
| { |
| for (a = angle_e; a <= MOTOR_ANGLE_E_MAX; a += angle_step) |
| { |
| motor_angle_e_update(&angle, a, DIR_CW); |
| } |
| } |
| |
| /* Test poles counter before final step */ |
| |
| TEST_ASSERT_EQUAL_INT8(4, angle.i); |
| |
| /* And rest 0.1 */ |
| |
| motor_angle_e_update(&angle, angle_step, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(5, angle.i); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| } |
| |
| /* Update mechanical angle in CW direction */ |
| |
| static void test_angle_m_update_cw(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 8; |
| motor_angle_init(&angle, p); |
| |
| /* Update mechanical angle with 0.0 */ |
| |
| angle_step = 0.0; |
| expected_m = 0.0; |
| expected_e = 0.0; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| motor_angle_m_update(&angle, angle_step, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| |
| /* Update mechanical angle with 0.1 */ |
| |
| angle_step = 0.1; |
| expected_m = angle_step; |
| expected_e = angle_step * p - 0*MOTOR_ANGLE_E_MAX / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| motor_angle_m_update(&angle, angle_step, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| |
| /* Update mechanical angle to get one electrical angle rotation + 0.1 */ |
| |
| angle_step = MOTOR_ANGLE_M_MAX / p + 0.1; |
| expected_m = angle_step; |
| expected_e = angle_step * p - 1 * MOTOR_ANGLE_E_MAX; |
| |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_m_update(&angle, angle_step / 3, DIR_CW); |
| motor_angle_m_update(&angle, 2 * angle_step / 3, DIR_CW); |
| motor_angle_m_update(&angle, 3 * angle_step / 3, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(1, angle.i); |
| } |
| |
| /* Update mechanical angle in CCW direction */ |
| |
| static void test_angle_m_update_ccw(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 8; |
| motor_angle_init(&angle, p); |
| |
| /* Update mechanical angle with 1.0 |
| * For 8 poles, one electrical angle rotationa takes ~0.785. |
| * So with angle step = 1.0 we have 1 electical angle rotation plus |
| * some rest. |
| */ |
| |
| angle_step = 1.0; |
| expected_m = angle_step; |
| expected_e = angle_step * p - 1 * MOTOR_ANGLE_E_MAX; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| motor_angle_m_update(&angle, angle_step, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(1, angle.i); |
| |
| /* Update mechanical angle to get one electrical angle rotation */ |
| |
| angle_step = angle_step - MOTOR_ANGLE_E_MAX / p; |
| expected_m = angle_step; |
| expected_e = angle_step * p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_m_update(&angle, angle_step / 3, DIR_CCW); |
| motor_angle_m_update(&angle, 2 * angle_step / 3, DIR_CCW); |
| motor_angle_m_update(&angle, 3 * angle_step / 3, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| } |
| |
| /* Update mechanical angle and overflow mechanical angle in CW direction */ |
| |
| static void test_angle_m_update_cw_overflow(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 3; |
| motor_angle_init(&angle, p); |
| |
| /* Full mechanical angle rotation (2PI) + 0.1 in CW direction */ |
| |
| angle_step = 0.1; |
| expected_m = angle_step; |
| expected_e = 0 * MOTOR_ANGLE_E_MAX / p + angle_step * p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_m_update(&angle, 0.0, DIR_CW); |
| motor_angle_m_update(&angle, MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| motor_angle_m_update(&angle, 1 * MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| motor_angle_m_update(&angle, 2 * MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| motor_angle_m_update(&angle, angle_step, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(0, angle.i); |
| } |
| |
| /* Update mechanical angle and overflow mechanical angle in CCW direction */ |
| |
| static void test_angle_m_update_ccw_overflow(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 3; |
| motor_angle_init(&angle, p); |
| |
| /* Full mechanical angle rotation (2PI) + 0.1 in CCW direction */ |
| |
| angle_step = MOTOR_ANGLE_M_MAX - 0.1; |
| expected_m = angle_step; |
| expected_e = MOTOR_ANGLE_E_MAX - 0.1 * p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_m_update(&angle, 0.0, DIR_CCW); |
| motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW); |
| motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW); |
| motor_angle_m_update(&angle, 2 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW); |
| motor_angle_m_update(&angle, 1 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW); |
| motor_angle_m_update(&angle, angle_step, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(p - 1, angle.i); |
| } |
| |
| /* Update mechanical angle and change direction */ |
| |
| static void test_angle_m_change_dir(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float expected_i = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 3; |
| motor_angle_init(&angle, p); |
| |
| /* Move mechanical angle by 3*(2PI)/4 in CW direction */ |
| |
| angle_step = 3 * MOTOR_ANGLE_M_MAX / 4; |
| expected_m = angle_step; |
| expected_i = ((int)(angle_step * p / MOTOR_ANGLE_M_MAX)); |
| expected_e = angle_step * p - expected_i * MOTOR_ANGLE_E_MAX; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_m_update(&angle, 0.0, DIR_CW); |
| motor_angle_m_update(&angle, 1 * MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| motor_angle_m_update(&angle, 2 * MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(expected_i, angle.i); |
| |
| /* Move mechanical angle by 1.0 in CCW direction */ |
| |
| angle_step = 3 * MOTOR_ANGLE_M_MAX / 4 - 2.0; |
| expected_m = angle_step; |
| expected_i = ((int)(angle_step * p / MOTOR_ANGLE_M_MAX)); |
| expected_e = angle_step * p - expected_i * MOTOR_ANGLE_E_MAX; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4 - 1.0, DIR_CCW); |
| motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4 - 2.0, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(expected_i, angle.i); |
| } |
| |
| /* Mix update mechanical angle and update electrical angle */ |
| |
| static void test_angle_m_el_mixed(void) |
| { |
| struct motor_angle_s angle; |
| uint8_t p = 0; |
| int i = 0; |
| float angle_step = 0.0; |
| float angle_m = 0.0; |
| float angle_e = 0.0; |
| float expected_e = 0.0; |
| float expected_m = 0.0; |
| float expected_i = 0.0; |
| float s = 0.0; |
| float c = 0.0; |
| float a = 0.0; |
| |
| /* Initialize motor angle */ |
| |
| p = 27; |
| motor_angle_init(&angle, p); |
| |
| /* Update mechanical angle to get 4 electrical angle |
| * rotations + 0.1 in CW direction |
| */ |
| |
| angle_step = 4 * MOTOR_ANGLE_M_MAX / p + 0.1; |
| expected_m = angle_step; |
| expected_i = ((int)(angle_step * p / MOTOR_ANGLE_M_MAX)); |
| expected_e = angle_step * p - expected_i * MOTOR_ANGLE_E_MAX; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move in a few steps */ |
| |
| motor_angle_m_update(&angle, 0.0, DIR_CW); |
| motor_angle_m_update(&angle, MOTOR_ANGLE_M_MAX / p, DIR_CW); |
| motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / p, DIR_CW); |
| motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / p + 0.1, DIR_CW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(expected_i, angle.i); |
| |
| /* Now move electrical angle by 2 full rotation in CCW direction. |
| * This should give us the same electrical angle and mechanical |
| * angle reduced by 2 electrical rotations. |
| */ |
| |
| angle_step = 2 * MOTOR_ANGLE_E_MAX; |
| expected_i = expected_i - 2; |
| expected_m = expected_m - 2 * MOTOR_ANGLE_M_MAX / p; |
| s = sin(expected_e); |
| c = cos(expected_e); |
| |
| /* Move angle in loop */ |
| |
| for (i = 0; i < 2; i += 1) |
| { |
| for (a = expected_e ; a >= 0.0; a -= 0.1) |
| { |
| motor_angle_e_update(&angle, a, DIR_CCW); |
| } |
| } |
| |
| /* Final step */ |
| |
| motor_angle_e_update(&angle, expected_e, DIR_CCW); |
| |
| angle_m = motor_angle_m_get(&angle); |
| angle_e = motor_angle_e_get(&angle); |
| |
| /* Test */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e); |
| TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin); |
| TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos); |
| TEST_ASSERT_EQUAL_INT8(expected_i, angle.i); |
| } |
| |
| /**************************************************************************** |
| * Public Functions |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Name: test_motor |
| ****************************************************************************/ |
| |
| void test_motor(void) |
| { |
| UNITY_BEGIN(); |
| |
| TEST_SEPARATOR(); |
| |
| /* Test some definitions */ |
| |
| TEST_ASSERT_EQUAL_FLOAT(1.0, DIR_CW); |
| TEST_ASSERT_EQUAL_FLOAT(-1.0, DIR_CCW); |
| |
| /* Openloop control functions */ |
| |
| RUN_TEST(test_openloop_init); |
| RUN_TEST(test_openloop_one_step); |
| RUN_TEST(test_openloop_many_steps); |
| RUN_TEST(test_openloop_max_speed); |
| RUN_TEST(test_openloop_normalize_angle); |
| |
| /* Motor angle */ |
| |
| RUN_TEST(test_angle_init); |
| RUN_TEST(test_angle_el_update_cw); |
| RUN_TEST(test_angle_el_update_ccw); |
| RUN_TEST(test_angle_el_update_cw_overflow); |
| RUN_TEST(test_angle_el_update_ccw_overflow); |
| RUN_TEST(test_angle_el_change_dir); |
| RUN_TEST(test_angle_m_update_cw); |
| RUN_TEST(test_angle_m_update_ccw); |
| RUN_TEST(test_angle_m_update_cw_overflow); |
| RUN_TEST(test_angle_m_update_ccw_overflow); |
| RUN_TEST(test_angle_m_change_dir); |
| RUN_TEST(test_angle_m_el_mixed); |
| |
| UNITY_END(); |
| } |