blob: 539ddd06ee0512a49bf86d6a937c2502298b05b3 [file] [log] [blame]
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#include "rocksdb/utilities/spatial_db.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <algorithm>
#include <condition_variable>
#include <inttypes.h>
#include <string>
#include <vector>
#include <mutex>
#include <thread>
#include <set>
#include <unordered_set>
#include "rocksdb/cache.h"
#include "rocksdb/options.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/statistics.h"
#include "rocksdb/table.h"
#include "rocksdb/db.h"
#include "rocksdb/utilities/stackable_db.h"
#include "util/coding.h"
#include "utilities/spatialdb/utils.h"
#include "port/port.h"
namespace rocksdb {
namespace spatial {
// Column families are used to store element's data and spatial indexes. We use
// [default] column family to store the element data. This is the format of
// [default] column family:
// * id (fixed 64 big endian) -> blob (length prefixed slice) feature_set
// (serialized)
// We have one additional column family for each spatial index. The name of the
// column family is [spatial$<spatial_index_name>]. The format is:
// * quad_key (fixed 64 bit big endian) id (fixed 64 bit big endian) -> ""
// We store information about indexes in [metadata] column family. Format is:
// * spatial$<spatial_index_name> -> bbox (4 double encodings) tile_bits
// (varint32)
namespace {
const std::string kMetadataColumnFamilyName("metadata");
inline std::string GetSpatialIndexColumnFamilyName(
const std::string& spatial_index_name) {
return "spatial$" + spatial_index_name;
}
inline bool GetSpatialIndexName(const std::string& column_family_name,
Slice* dst) {
*dst = Slice(column_family_name);
if (dst->starts_with("spatial$")) {
dst->remove_prefix(8); // strlen("spatial$")
return true;
}
return false;
}
} // namespace
void Variant::Init(const Variant& v, Data& d) {
switch (v.type_) {
case kNull:
break;
case kBool:
d.b = v.data_.b;
break;
case kInt:
d.i = v.data_.i;
break;
case kDouble:
d.d = v.data_.d;
break;
case kString:
new (d.s) std::string(*GetStringPtr(v.data_));
break;
default:
assert(false);
}
}
Variant& Variant::operator=(const Variant& v) {
// Construct first a temp so exception from a string ctor
// does not change this object
Data tmp;
Init(v, tmp);
Type thisType = type_;
// Boils down to copying bits so safe
std::swap(tmp, data_);
type_ = v.type_;
Destroy(thisType, tmp);
return *this;
}
Variant& Variant::operator=(Variant&& rhs) {
Destroy(type_, data_);
if (rhs.type_ == kString) {
new (data_.s) std::string(std::move(*GetStringPtr(rhs.data_)));
} else {
data_ = rhs.data_;
}
type_ = rhs.type_;
rhs.type_ = kNull;
return *this;
}
bool Variant::operator==(const Variant& rhs) const {
if (type_ != rhs.type_) {
return false;
}
switch (type_) {
case kNull:
return true;
case kBool:
return data_.b == rhs.data_.b;
case kInt:
return data_.i == rhs.data_.i;
case kDouble:
return data_.d == rhs.data_.d;
case kString:
return *GetStringPtr(data_) == *GetStringPtr(rhs.data_);
default:
assert(false);
}
// it will never reach here, but otherwise the compiler complains
return false;
}
FeatureSet* FeatureSet::Set(const std::string& key, const Variant& value) {
map_.insert({key, value});
return this;
}
bool FeatureSet::Contains(const std::string& key) const {
return map_.find(key) != map_.end();
}
const Variant& FeatureSet::Get(const std::string& key) const {
auto itr = map_.find(key);
assert(itr != map_.end());
return itr->second;
}
FeatureSet::iterator FeatureSet::Find(const std::string& key) const {
return iterator(map_.find(key));
}
void FeatureSet::Clear() { map_.clear(); }
void FeatureSet::Serialize(std::string* output) const {
for (const auto& iter : map_) {
PutLengthPrefixedSlice(output, iter.first);
output->push_back(static_cast<char>(iter.second.type()));
switch (iter.second.type()) {
case Variant::kNull:
break;
case Variant::kBool:
output->push_back(static_cast<char>(iter.second.get_bool()));
break;
case Variant::kInt:
PutVarint64(output, iter.second.get_int());
break;
case Variant::kDouble: {
PutDouble(output, iter.second.get_double());
break;
}
case Variant::kString:
PutLengthPrefixedSlice(output, iter.second.get_string());
break;
default:
assert(false);
}
}
}
bool FeatureSet::Deserialize(const Slice& input) {
assert(map_.empty());
Slice s(input);
while (s.size()) {
Slice key;
if (!GetLengthPrefixedSlice(&s, &key) || s.size() == 0) {
return false;
}
char type = s[0];
s.remove_prefix(1);
switch (type) {
case Variant::kNull: {
map_.insert({key.ToString(), Variant()});
break;
}
case Variant::kBool: {
if (s.size() == 0) {
return false;
}
map_.insert({key.ToString(), Variant(static_cast<bool>(s[0]))});
s.remove_prefix(1);
break;
}
case Variant::kInt: {
uint64_t v;
if (!GetVarint64(&s, &v)) {
return false;
}
map_.insert({key.ToString(), Variant(v)});
break;
}
case Variant::kDouble: {
double d;
if (!GetDouble(&s, &d)) {
return false;
}
map_.insert({key.ToString(), Variant(d)});
break;
}
case Variant::kString: {
Slice str;
if (!GetLengthPrefixedSlice(&s, &str)) {
return false;
}
map_.insert({key.ToString(), str.ToString()});
break;
}
default:
return false;
}
}
return true;
}
std::string FeatureSet::DebugString() const {
std::string out = "{";
bool comma = false;
for (const auto& iter : map_) {
if (comma) {
out.append(", ");
} else {
comma = true;
}
out.append("\"" + iter.first + "\": ");
switch (iter.second.type()) {
case Variant::kNull:
out.append("null");
break;
case Variant::kBool:
if (iter.second.get_bool()) {
out.append("true");
} else {
out.append("false");
}
break;
case Variant::kInt: {
char buf[32];
snprintf(buf, sizeof(buf), "%" PRIu64, iter.second.get_int());
out.append(buf);
break;
}
case Variant::kDouble: {
char buf[32];
snprintf(buf, sizeof(buf), "%lf", iter.second.get_double());
out.append(buf);
break;
}
case Variant::kString:
out.append("\"" + iter.second.get_string() + "\"");
break;
default:
assert(false);
}
}
return out + "}";
}
class ValueGetter {
public:
ValueGetter() {}
virtual ~ValueGetter() {}
virtual bool Get(uint64_t id) = 0;
virtual const Slice value() const = 0;
virtual Status status() const = 0;
};
class ValueGetterFromDB : public ValueGetter {
public:
ValueGetterFromDB(DB* db, ColumnFamilyHandle* cf) : db_(db), cf_(cf) {}
virtual bool Get(uint64_t id) override {
std::string encoded_id;
PutFixed64BigEndian(&encoded_id, id);
status_ = db_->Get(ReadOptions(), cf_, encoded_id, &value_);
if (status_.IsNotFound()) {
status_ = Status::Corruption("Index inconsistency");
return false;
}
return true;
}
virtual const Slice value() const override { return value_; }
virtual Status status() const override { return status_; }
private:
std::string value_;
DB* db_;
ColumnFamilyHandle* cf_;
Status status_;
};
class ValueGetterFromIterator : public ValueGetter {
public:
explicit ValueGetterFromIterator(Iterator* iterator) : iterator_(iterator) {}
virtual bool Get(uint64_t id) override {
std::string encoded_id;
PutFixed64BigEndian(&encoded_id, id);
iterator_->Seek(encoded_id);
if (!iterator_->Valid() || iterator_->key() != Slice(encoded_id)) {
status_ = Status::Corruption("Index inconsistency");
return false;
}
return true;
}
virtual const Slice value() const override { return iterator_->value(); }
virtual Status status() const override { return status_; }
private:
std::unique_ptr<Iterator> iterator_;
Status status_;
};
class SpatialIndexCursor : public Cursor {
public:
// tile_box is inclusive
SpatialIndexCursor(Iterator* spatial_iterator, ValueGetter* value_getter,
const BoundingBox<uint64_t>& tile_bbox, uint32_t tile_bits)
: value_getter_(value_getter), valid_(true) {
// calculate quad keys we'll need to query
std::vector<uint64_t> quad_keys;
quad_keys.reserve((tile_bbox.max_x - tile_bbox.min_x + 1) *
(tile_bbox.max_y - tile_bbox.min_y + 1));
for (uint64_t x = tile_bbox.min_x; x <= tile_bbox.max_x; ++x) {
for (uint64_t y = tile_bbox.min_y; y <= tile_bbox.max_y; ++y) {
quad_keys.push_back(GetQuadKeyFromTile(x, y, tile_bits));
}
}
std::sort(quad_keys.begin(), quad_keys.end());
// load primary key ids for all quad keys
for (auto quad_key : quad_keys) {
std::string encoded_quad_key;
PutFixed64BigEndian(&encoded_quad_key, quad_key);
Slice slice_quad_key(encoded_quad_key);
// If CheckQuadKey is true, there is no need to reseek, since
// spatial_iterator is already pointing at the correct quad key. This is
// an optimization.
if (!CheckQuadKey(spatial_iterator, slice_quad_key)) {
spatial_iterator->Seek(slice_quad_key);
}
while (CheckQuadKey(spatial_iterator, slice_quad_key)) {
// extract ID from spatial_iterator
uint64_t id;
bool ok = GetFixed64BigEndian(
Slice(spatial_iterator->key().data() + sizeof(uint64_t),
sizeof(uint64_t)),
&id);
if (!ok) {
valid_ = false;
status_ = Status::Corruption("Spatial index corruption");
break;
}
primary_key_ids_.insert(id);
spatial_iterator->Next();
}
}
if (!spatial_iterator->status().ok()) {
status_ = spatial_iterator->status();
valid_ = false;
}
delete spatial_iterator;
valid_ = valid_ && !primary_key_ids_.empty();
if (valid_) {
primary_keys_iterator_ = primary_key_ids_.begin();
ExtractData();
}
}
virtual bool Valid() const override { return valid_; }
virtual void Next() override {
assert(valid_);
++primary_keys_iterator_;
if (primary_keys_iterator_ == primary_key_ids_.end()) {
valid_ = false;
return;
}
ExtractData();
}
virtual const Slice blob() override { return current_blob_; }
virtual const FeatureSet& feature_set() override {
return current_feature_set_;
}
virtual Status status() const override {
if (!status_.ok()) {
return status_;
}
return value_getter_->status();
}
private:
// * returns true if spatial iterator is on the current quad key and all is
// well
// * returns false if spatial iterator is not on current, or iterator is
// invalid or corruption
bool CheckQuadKey(Iterator* spatial_iterator, const Slice& quad_key) {
if (!spatial_iterator->Valid()) {
return false;
}
if (spatial_iterator->key().size() != 2 * sizeof(uint64_t)) {
status_ = Status::Corruption("Invalid spatial index key");
valid_ = false;
return false;
}
Slice spatial_iterator_quad_key(spatial_iterator->key().data(),
sizeof(uint64_t));
if (spatial_iterator_quad_key != quad_key) {
// caller needs to reseek
return false;
}
// if we come to here, we have found the quad key
return true;
}
void ExtractData() {
assert(valid_);
valid_ = value_getter_->Get(*primary_keys_iterator_);
if (valid_) {
Slice data = value_getter_->value();
current_feature_set_.Clear();
if (!GetLengthPrefixedSlice(&data, &current_blob_) ||
!current_feature_set_.Deserialize(data)) {
status_ = Status::Corruption("Primary key column family corruption");
valid_ = false;
}
}
}
unique_ptr<ValueGetter> value_getter_;
bool valid_;
Status status_;
FeatureSet current_feature_set_;
Slice current_blob_;
// This is loaded from spatial iterator.
std::unordered_set<uint64_t> primary_key_ids_;
std::unordered_set<uint64_t>::iterator primary_keys_iterator_;
};
class ErrorCursor : public Cursor {
public:
explicit ErrorCursor(Status s) : s_(s) { assert(!s.ok()); }
virtual Status status() const override { return s_; }
virtual bool Valid() const override { return false; }
virtual void Next() override { assert(false); }
virtual const Slice blob() override {
assert(false);
return Slice();
}
virtual const FeatureSet& feature_set() override {
assert(false);
// compiler complains otherwise
return trash_;
}
private:
Status s_;
FeatureSet trash_;
};
class SpatialDBImpl : public SpatialDB {
public:
// * db -- base DB that needs to be forwarded to StackableDB
// * data_column_family -- column family used to store the data
// * spatial_indexes -- a list of spatial indexes together with column
// families that correspond to those spatial indexes
// * next_id -- next ID in auto-incrementing ID. This is usually
// `max_id_currenty_in_db + 1`
SpatialDBImpl(
DB* db, ColumnFamilyHandle* data_column_family,
const std::vector<std::pair<SpatialIndexOptions, ColumnFamilyHandle*>>&
spatial_indexes,
uint64_t next_id, bool read_only)
: SpatialDB(db),
data_column_family_(data_column_family),
next_id_(next_id),
read_only_(read_only) {
for (const auto& index : spatial_indexes) {
name_to_index_.insert(
{index.first.name, IndexColumnFamily(index.first, index.second)});
}
}
~SpatialDBImpl() {
for (auto& iter : name_to_index_) {
delete iter.second.column_family;
}
delete data_column_family_;
}
virtual Status Insert(
const WriteOptions& write_options, const BoundingBox<double>& bbox,
const Slice& blob, const FeatureSet& feature_set,
const std::vector<std::string>& spatial_indexes) override {
WriteBatch batch;
if (spatial_indexes.size() == 0) {
return Status::InvalidArgument("Spatial indexes can't be empty");
}
const size_t kWriteOutEveryBytes = 1024 * 1024; // 1MB
uint64_t id = next_id_.fetch_add(1);
for (const auto& si : spatial_indexes) {
auto itr = name_to_index_.find(si);
if (itr == name_to_index_.end()) {
return Status::InvalidArgument("Can't find index " + si);
}
const auto& spatial_index = itr->second.index;
if (!spatial_index.bbox.Intersects(bbox)) {
continue;
}
BoundingBox<uint64_t> tile_bbox = GetTileBoundingBox(spatial_index, bbox);
for (uint64_t x = tile_bbox.min_x; x <= tile_bbox.max_x; ++x) {
for (uint64_t y = tile_bbox.min_y; y <= tile_bbox.max_y; ++y) {
// see above for format
std::string key;
PutFixed64BigEndian(
&key, GetQuadKeyFromTile(x, y, spatial_index.tile_bits));
PutFixed64BigEndian(&key, id);
batch.Put(itr->second.column_family, key, Slice());
if (batch.GetDataSize() >= kWriteOutEveryBytes) {
Status s = Write(write_options, &batch);
batch.Clear();
if (!s.ok()) {
return s;
}
}
}
}
}
// see above for format
std::string data_key;
PutFixed64BigEndian(&data_key, id);
std::string data_value;
PutLengthPrefixedSlice(&data_value, blob);
feature_set.Serialize(&data_value);
batch.Put(data_column_family_, data_key, data_value);
return Write(write_options, &batch);
}
virtual Status Compact(int num_threads) override {
std::vector<ColumnFamilyHandle*> column_families;
column_families.push_back(data_column_family_);
for (auto& iter : name_to_index_) {
column_families.push_back(iter.second.column_family);
}
std::mutex state_mutex;
std::condition_variable cv;
Status s;
int threads_running = 0;
std::vector<port::Thread> threads;
for (auto cfh : column_families) {
threads.emplace_back([&, cfh] {
{
std::unique_lock<std::mutex> lk(state_mutex);
cv.wait(lk, [&] { return threads_running < num_threads; });
threads_running++;
}
Status t = Flush(FlushOptions(), cfh);
if (t.ok()) {
t = CompactRange(CompactRangeOptions(), cfh, nullptr, nullptr);
}
{
std::unique_lock<std::mutex> lk(state_mutex);
threads_running--;
if (s.ok() && !t.ok()) {
s = t;
}
cv.notify_one();
}
});
}
for (auto& t : threads) {
t.join();
}
return s;
}
virtual Cursor* Query(const ReadOptions& read_options,
const BoundingBox<double>& bbox,
const std::string& spatial_index) override {
auto itr = name_to_index_.find(spatial_index);
if (itr == name_to_index_.end()) {
return new ErrorCursor(Status::InvalidArgument(
"Spatial index " + spatial_index + " not found"));
}
const auto& si = itr->second.index;
Iterator* spatial_iterator;
ValueGetter* value_getter;
if (read_only_) {
spatial_iterator = NewIterator(read_options, itr->second.column_family);
value_getter = new ValueGetterFromDB(this, data_column_family_);
} else {
std::vector<Iterator*> iterators;
Status s = NewIterators(read_options,
{data_column_family_, itr->second.column_family},
&iterators);
if (!s.ok()) {
return new ErrorCursor(s);
}
spatial_iterator = iterators[1];
value_getter = new ValueGetterFromIterator(iterators[0]);
}
return new SpatialIndexCursor(spatial_iterator, value_getter,
GetTileBoundingBox(si, bbox), si.tile_bits);
}
private:
ColumnFamilyHandle* data_column_family_;
struct IndexColumnFamily {
SpatialIndexOptions index;
ColumnFamilyHandle* column_family;
IndexColumnFamily(const SpatialIndexOptions& _index,
ColumnFamilyHandle* _cf)
: index(_index), column_family(_cf) {}
};
// constant after construction!
std::unordered_map<std::string, IndexColumnFamily> name_to_index_;
std::atomic<uint64_t> next_id_;
bool read_only_;
};
namespace {
DBOptions GetDBOptionsFromSpatialDBOptions(const SpatialDBOptions& options) {
DBOptions db_options;
db_options.max_open_files = 50000;
db_options.max_background_compactions = 3 * options.num_threads / 4;
db_options.max_background_flushes =
options.num_threads - db_options.max_background_compactions;
db_options.env->SetBackgroundThreads(db_options.max_background_compactions,
Env::LOW);
db_options.env->SetBackgroundThreads(db_options.max_background_flushes,
Env::HIGH);
db_options.statistics = CreateDBStatistics();
if (options.bulk_load) {
db_options.stats_dump_period_sec = 600;
} else {
db_options.stats_dump_period_sec = 1800; // 30min
}
return db_options;
}
ColumnFamilyOptions GetColumnFamilyOptions(const SpatialDBOptions& options,
std::shared_ptr<Cache> block_cache) {
ColumnFamilyOptions column_family_options;
column_family_options.write_buffer_size = 128 * 1024 * 1024; // 128MB
column_family_options.max_write_buffer_number = 4;
column_family_options.max_bytes_for_level_base = 256 * 1024 * 1024; // 256MB
column_family_options.target_file_size_base = 64 * 1024 * 1024; // 64MB
column_family_options.level0_file_num_compaction_trigger = 2;
column_family_options.level0_slowdown_writes_trigger = 16;
column_family_options.level0_stop_writes_trigger = 32;
// only compress levels >= 2
column_family_options.compression_per_level.resize(
column_family_options.num_levels);
for (int i = 0; i < column_family_options.num_levels; ++i) {
if (i < 2) {
column_family_options.compression_per_level[i] = kNoCompression;
} else {
column_family_options.compression_per_level[i] = kLZ4Compression;
}
}
BlockBasedTableOptions table_options;
table_options.block_cache = block_cache;
column_family_options.table_factory.reset(
NewBlockBasedTableFactory(table_options));
return column_family_options;
}
ColumnFamilyOptions OptimizeOptionsForDataColumnFamily(
ColumnFamilyOptions options, std::shared_ptr<Cache> block_cache) {
options.prefix_extractor.reset(NewNoopTransform());
BlockBasedTableOptions block_based_options;
block_based_options.index_type = BlockBasedTableOptions::kHashSearch;
block_based_options.block_cache = block_cache;
options.table_factory.reset(NewBlockBasedTableFactory(block_based_options));
return options;
}
} // namespace
class MetadataStorage {
public:
MetadataStorage(DB* db, ColumnFamilyHandle* cf) : db_(db), cf_(cf) {}
~MetadataStorage() {}
// format: <min_x double> <min_y double> <max_x double> <max_y double>
// <tile_bits varint32>
Status AddIndex(const SpatialIndexOptions& index) {
std::string encoded_index;
PutDouble(&encoded_index, index.bbox.min_x);
PutDouble(&encoded_index, index.bbox.min_y);
PutDouble(&encoded_index, index.bbox.max_x);
PutDouble(&encoded_index, index.bbox.max_y);
PutVarint32(&encoded_index, index.tile_bits);
return db_->Put(WriteOptions(), cf_,
GetSpatialIndexColumnFamilyName(index.name), encoded_index);
}
Status GetIndex(const std::string& name, SpatialIndexOptions* dst) {
std::string value;
Status s = db_->Get(ReadOptions(), cf_,
GetSpatialIndexColumnFamilyName(name), &value);
if (!s.ok()) {
return s;
}
dst->name = name;
Slice encoded_index(value);
bool ok = GetDouble(&encoded_index, &(dst->bbox.min_x));
ok = ok && GetDouble(&encoded_index, &(dst->bbox.min_y));
ok = ok && GetDouble(&encoded_index, &(dst->bbox.max_x));
ok = ok && GetDouble(&encoded_index, &(dst->bbox.max_y));
ok = ok && GetVarint32(&encoded_index, &(dst->tile_bits));
return ok ? Status::OK() : Status::Corruption("Index encoding corrupted");
}
private:
DB* db_;
ColumnFamilyHandle* cf_;
};
Status SpatialDB::Create(
const SpatialDBOptions& options, const std::string& name,
const std::vector<SpatialIndexOptions>& spatial_indexes) {
DBOptions db_options = GetDBOptionsFromSpatialDBOptions(options);
db_options.create_if_missing = true;
db_options.create_missing_column_families = true;
db_options.error_if_exists = true;
auto block_cache = NewLRUCache(options.cache_size);
ColumnFamilyOptions column_family_options =
GetColumnFamilyOptions(options, block_cache);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(ColumnFamilyDescriptor(
kDefaultColumnFamilyName,
OptimizeOptionsForDataColumnFamily(column_family_options, block_cache)));
column_families.push_back(
ColumnFamilyDescriptor(kMetadataColumnFamilyName, column_family_options));
for (const auto& index : spatial_indexes) {
column_families.emplace_back(GetSpatialIndexColumnFamilyName(index.name),
column_family_options);
}
std::vector<ColumnFamilyHandle*> handles;
DB* base_db;
Status s = DB::Open(db_options, name, column_families, &handles, &base_db);
if (!s.ok()) {
return s;
}
MetadataStorage metadata(base_db, handles[1]);
for (const auto& index : spatial_indexes) {
s = metadata.AddIndex(index);
if (!s.ok()) {
break;
}
}
for (auto h : handles) {
delete h;
}
delete base_db;
return s;
}
Status SpatialDB::Open(const SpatialDBOptions& options, const std::string& name,
SpatialDB** db, bool read_only) {
DBOptions db_options = GetDBOptionsFromSpatialDBOptions(options);
auto block_cache = NewLRUCache(options.cache_size);
ColumnFamilyOptions column_family_options =
GetColumnFamilyOptions(options, block_cache);
Status s;
std::vector<std::string> existing_column_families;
std::vector<std::string> spatial_indexes;
s = DB::ListColumnFamilies(db_options, name, &existing_column_families);
if (!s.ok()) {
return s;
}
for (const auto& cf_name : existing_column_families) {
Slice spatial_index;
if (GetSpatialIndexName(cf_name, &spatial_index)) {
spatial_indexes.emplace_back(spatial_index.data(), spatial_index.size());
}
}
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(ColumnFamilyDescriptor(
kDefaultColumnFamilyName,
OptimizeOptionsForDataColumnFamily(column_family_options, block_cache)));
column_families.push_back(
ColumnFamilyDescriptor(kMetadataColumnFamilyName, column_family_options));
for (const auto& index : spatial_indexes) {
column_families.emplace_back(GetSpatialIndexColumnFamilyName(index),
column_family_options);
}
std::vector<ColumnFamilyHandle*> handles;
DB* base_db;
if (read_only) {
s = DB::OpenForReadOnly(db_options, name, column_families, &handles,
&base_db);
} else {
s = DB::Open(db_options, name, column_families, &handles, &base_db);
}
if (!s.ok()) {
return s;
}
MetadataStorage metadata(base_db, handles[1]);
std::vector<std::pair<SpatialIndexOptions, ColumnFamilyHandle*>> index_cf;
assert(handles.size() == spatial_indexes.size() + 2);
for (size_t i = 0; i < spatial_indexes.size(); ++i) {
SpatialIndexOptions index_options;
s = metadata.GetIndex(spatial_indexes[i], &index_options);
if (!s.ok()) {
break;
}
index_cf.emplace_back(index_options, handles[i + 2]);
}
uint64_t next_id = 1;
if (s.ok()) {
// find next_id
Iterator* iter = base_db->NewIterator(ReadOptions(), handles[0]);
iter->SeekToLast();
if (iter->Valid()) {
uint64_t last_id = 0;
if (!GetFixed64BigEndian(iter->key(), &last_id)) {
s = Status::Corruption("Invalid key in data column family");
} else {
next_id = last_id + 1;
}
}
delete iter;
}
if (!s.ok()) {
for (auto h : handles) {
delete h;
}
delete base_db;
return s;
}
// I don't need metadata column family any more, so delete it
delete handles[1];
*db = new SpatialDBImpl(base_db, handles[0], index_cf, next_id, read_only);
return Status::OK();
}
} // namespace spatial
} // namespace rocksdb
#endif // ROCKSDB_LITE