blob: ec5507c9fa53333606902fe3945483696116c0f6 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <controller/ble_fem.h>
#include <hal/nrf_radio.h>
#include <hal/nrf_ccm.h>
#include <hal/nrf_aar.h>
#include <hal/nrf_timer.h>
#include <hal/nrf_rtc.h>
#include "syscfg/syscfg.h"
#include "os/os.h"
/* Keep os_cputime explicitly to enable build on non-Mynewt platforms */
#include "os/os_cputime.h"
#include "ble/xcvr.h"
#include "nimble/ble.h"
#include "nimble/nimble_opt.h"
#include "nimble/nimble_npl.h"
#include "controller/ble_phy.h"
#include "controller/ble_phy_trace.h"
#include "controller/ble_ll.h"
#include "nrfx.h"
#if MYNEWT
#ifdef NRF52_SERIES
#include <mcu/nrf52_clock.h>
#endif
#ifdef NRF53_SERIES
#include <mcu/nrf5340_net_clock.h>
#endif
#include "mcu/cmsis_nvic.h"
#include "hal/hal_gpio.h"
#else
#include <hal/nrf_clock.h>
#ifdef NRF52_SERIES
#include "core_cm4.h"
#endif
#endif
#include <nrf_erratas.h>
#include "phy_priv.h"
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
#if !MYNEWT_VAL_CHOICE(MCU_TARGET, nRF52840) && \
!MYNEWT_VAL_CHOICE(MCU_TARGET, nRF52811) && \
!MYNEWT_VAL_CHOICE(MCU_TARGET, nRF5340_NET)
#error LE Coded PHY can only be enabled on nRF52811, nRF52840 or nRF5340
#endif
#endif
#if BABBLESIM
extern void tm_tick(void);
#endif
#include <controller/ble_ll_pdu.h>
/*
* NOTE: This code uses a couple of PPI channels so care should be taken when
* using PPI somewhere else.
*
* Pre-programmed channels: CH20, CH21, CH23, CH25, CH31
* Regular channels: CH4, CH5 and optionally CH6, CH7, CH17, CH18, CH19
* - CH4 = cancel wfr timer on address match
* - CH5 = disable radio on wfr timer expiry
* - CH6 = PA/LNA control (enable)
* - CH7 = PA/LNA control (disable)
* - CH17 = (optional) gpio debug for radio ramp-up
* - CH18 = (optional) gpio debug for wfr timer RX enabled
* - CH19 = (optional) gpio debug for wfr timer radio disabled
*
*/
/* XXX: 4) Make sure RF is higher priority interrupt than schedule */
/*
* XXX: Maximum possible transmit time is 1 msec for a 60ppm crystal
* and 16ms for a 30ppm crystal! We need to limit PDU size based on
* crystal accuracy. Look at this in the spec.
*/
/* XXX: private header file? */
extern uint8_t g_nrf_num_irks;
extern uint32_t g_nrf_irk_list[];
/* To disable all radio interrupts */
#define NRF_RADIO_IRQ_MASK_ALL (0x34FF)
/*
* We configure the nrf with a 1 byte S0 field, 8 bit length field, and
* zero bit S1 field. The preamble is 8 bits long.
*/
#define NRF_LFLEN_BITS (8)
#define NRF_S0LEN (1)
#define NRF_S1LEN_BITS (0)
#define NRF_CILEN_BITS (2)
#define NRF_TERMLEN_BITS (3)
/* Maximum length of frames */
#define NRF_MAXLEN (255)
#define NRF_BALEN (3) /* For base address of 3 bytes */
/* NRF_RADIO->PCNF0 configuration values */
#define NRF_PCNF0 (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) | \
(RADIO_PCNF0_S1INCL_Msk) | \
(NRF_S0LEN << RADIO_PCNF0_S0LEN_Pos) | \
(NRF_S1LEN_BITS << RADIO_PCNF0_S1LEN_Pos)
#define NRF_PCNF0_1M (NRF_PCNF0) | \
(RADIO_PCNF0_PLEN_8bit << RADIO_PCNF0_PLEN_Pos)
#define NRF_PCNF0_2M (NRF_PCNF0) | \
(RADIO_PCNF0_PLEN_16bit << RADIO_PCNF0_PLEN_Pos)
#define NRF_PCNF0_CODED (NRF_PCNF0) | \
(RADIO_PCNF0_PLEN_LongRange << RADIO_PCNF0_PLEN_Pos) | \
(NRF_CILEN_BITS << RADIO_PCNF0_CILEN_Pos) | \
(NRF_TERMLEN_BITS << RADIO_PCNF0_TERMLEN_Pos)
/* BLE PHY data structure */
struct ble_phy_obj
{
uint8_t phy_stats_initialized;
int8_t phy_txpwr_dbm;
uint8_t phy_chan;
uint8_t phy_state;
uint8_t phy_transition;
uint8_t phy_transition_late;
uint8_t phy_rx_started;
uint8_t phy_encrypted;
#if PHY_USE_HEADERMASK_WORKAROUND
uint8_t phy_headermask;
uint8_t phy_headerbyte;
#endif
uint8_t phy_privacy;
uint8_t phy_tx_pyld_len;
uint8_t phy_cur_phy_mode;
uint8_t phy_tx_phy_mode;
uint8_t phy_rx_phy_mode;
uint8_t phy_bcc_offset;
uint32_t phy_aar_scratch;
uint32_t phy_access_address;
struct ble_mbuf_hdr rxhdr;
void *txend_arg;
ble_phy_tx_end_func txend_cb;
uint32_t phy_start_cputime;
#if MYNEWT_VAL(BLE_PHY_VARIABLE_TIFS)
uint16_t tifs;
#endif
uint16_t txtx_time_us;
uint8_t txtx_time_anchor;
};
static struct ble_phy_obj g_ble_phy_data;
/* XXX: if 27 byte packets desired we can make this smaller */
/* Global transmit/receive buffer */
static uint32_t g_ble_phy_tx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
static uint32_t g_ble_phy_rx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/* Make sure word-aligned for faster copies */
static uint32_t g_ble_phy_enc_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
#endif
/* RF center frequency for each channel index (offset from 2400 MHz) */
static const uint8_t g_ble_phy_chan_freq[BLE_PHY_NUM_CHANS] = {
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, /* 0-9 */
24, 28, 30, 32, 34, 36, 38, 40, 42, 44, /* 10-19 */
46, 48, 50, 52, 54, 56, 58, 60, 62, 64, /* 20-29 */
66, 68, 70, 72, 74, 76, 78, 2, 26, 80, /* 30-39 */
};
#if MYNEWT_VAL(BLE_LL_PHY)
/* packet start offsets (in usecs) */
static const uint16_t g_ble_phy_mode_pkt_start_off[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 40,
[BLE_PHY_MODE_2M] = 24,
[BLE_PHY_MODE_CODED_125KBPS] = 376,
[BLE_PHY_MODE_CODED_500KBPS] = 376
};
#endif
/* Various radio timings */
/* Radio ramp-up times in usecs (fast mode) */
#define BLE_PHY_T_TXENFAST (XCVR_TX_RADIO_RAMPUP_USECS)
#define BLE_PHY_T_RXENFAST (XCVR_RX_RADIO_RAMPUP_USECS)
#if BABBLESIM
/* delay between EVENTS_READY and start of tx */
static const uint8_t g_ble_phy_t_txdelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 1,
[BLE_PHY_MODE_2M] = 1,
};
/* delay between EVENTS_END and end of txd packet */
static const uint8_t g_ble_phy_t_txenddelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 1,
[BLE_PHY_MODE_2M] = 1,
};
/* delay between rxd access address (w/ TERM1 for coded) and EVENTS_ADDRESS */
static const uint8_t g_ble_phy_t_rxaddrdelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 9,
[BLE_PHY_MODE_2M] = 5,
};
/* delay between end of rxd packet and EVENTS_END */
static const uint8_t g_ble_phy_t_rxenddelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 9,
[BLE_PHY_MODE_2M] = 5,
};
#else
/* delay between EVENTS_READY and start of tx */
static const uint8_t g_ble_phy_t_txdelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 4,
[BLE_PHY_MODE_2M] = 3,
[BLE_PHY_MODE_CODED_125KBPS] = 5,
[BLE_PHY_MODE_CODED_500KBPS] = 5
};
/* delay between EVENTS_END and end of txd packet */
static const uint8_t g_ble_phy_t_txenddelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 4,
[BLE_PHY_MODE_2M] = 3,
[BLE_PHY_MODE_CODED_125KBPS] = 9,
[BLE_PHY_MODE_CODED_500KBPS] = 3
};
/* delay between rxd access address (w/ TERM1 for coded) and EVENTS_ADDRESS */
static const uint8_t g_ble_phy_t_rxaddrdelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 6,
[BLE_PHY_MODE_2M] = 2,
[BLE_PHY_MODE_CODED_125KBPS] = 17,
[BLE_PHY_MODE_CODED_500KBPS] = 17
};
/* delay between end of rxd packet and EVENTS_END */
static const uint8_t g_ble_phy_t_rxenddelay[BLE_PHY_NUM_MODE] = {
[BLE_PHY_MODE_1M] = 6,
[BLE_PHY_MODE_2M] = 2,
[BLE_PHY_MODE_CODED_125KBPS] = 27,
[BLE_PHY_MODE_CODED_500KBPS] = 22
};
#endif
/* Statistics */
STATS_SECT_START(ble_phy_stats)
STATS_SECT_ENTRY(phy_isrs)
STATS_SECT_ENTRY(tx_good)
STATS_SECT_ENTRY(tx_fail)
STATS_SECT_ENTRY(tx_late)
STATS_SECT_ENTRY(tx_bytes)
STATS_SECT_ENTRY(rx_starts)
STATS_SECT_ENTRY(rx_aborts)
STATS_SECT_ENTRY(rx_valid)
STATS_SECT_ENTRY(rx_crc_err)
STATS_SECT_ENTRY(rx_late)
STATS_SECT_ENTRY(radio_state_errs)
STATS_SECT_ENTRY(rx_hw_err)
STATS_SECT_ENTRY(tx_hw_err)
STATS_SECT_END
STATS_SECT_DECL(ble_phy_stats) ble_phy_stats;
STATS_NAME_START(ble_phy_stats)
STATS_NAME(ble_phy_stats, phy_isrs)
STATS_NAME(ble_phy_stats, tx_good)
STATS_NAME(ble_phy_stats, tx_fail)
STATS_NAME(ble_phy_stats, tx_late)
STATS_NAME(ble_phy_stats, tx_bytes)
STATS_NAME(ble_phy_stats, rx_starts)
STATS_NAME(ble_phy_stats, rx_aborts)
STATS_NAME(ble_phy_stats, rx_valid)
STATS_NAME(ble_phy_stats, rx_crc_err)
STATS_NAME(ble_phy_stats, rx_late)
STATS_NAME(ble_phy_stats, radio_state_errs)
STATS_NAME(ble_phy_stats, rx_hw_err)
STATS_NAME(ble_phy_stats, tx_hw_err)
STATS_NAME_END(ble_phy_stats)
/*
* NOTE:
* Tested the following to see what would happen:
* -> NVIC has radio irq enabled (interrupt # 1, mask 0x2).
* -> Set up nrf to receive. Clear ADDRESS event register.
* -> Enable ADDRESS interrupt on nrf5 by writing to INTENSET.
* -> Enable RX.
* -> Disable interrupts globally using OS_ENTER_CRITICAL().
* -> Wait until a packet is received and the ADDRESS event occurs.
* -> Call ble_phy_disable().
*
* At this point I wanted to see the state of the cortex NVIC. The IRQ
* pending bit was TRUE for the radio interrupt (as expected) as we never
* serviced the radio interrupt (interrupts were disabled).
*
* What was unexpected was this: without clearing the pending IRQ in the NVIC,
* when radio interrupts were re-enabled (address event bit in INTENSET set to
* 1) and the radio ADDRESS event register read 1 (it was never cleared after
* the first address event), the radio did not enter the ISR! I would have
* expected that if the following were true, an interrupt would occur:
* -> NVIC ISER bit set to TRUE
* -> NVIC ISPR bit reads TRUE, meaning interrupt is pending.
* -> Radio peripheral interrupts are enabled for some event (or events).
* -> Corresponding event register(s) in radio peripheral read 1.
*
* Not sure what the end result of all this is. We will clear the pending
* bit in the NVIC just to be sure when we disable the PHY.
*/
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/*
* Per nordic, the number of bytes needed for scratch is 16 + MAX_PKT_SIZE.
* However, when I used a smaller size it still overwrote the scratchpad. Until
* I figure this out I am just going to allocate 67 words so we have enough
* space for 267 bytes of scratch. I used 268 bytes since not sure if this
* needs to be aligned and burning a byte is no big deal.
*/
//#define NRF_ENC_SCRATCH_WORDS (((MYNEWT_VAL(BLE_LL_MAX_PKT_SIZE) + 16) + 3) / 4)
#define NRF_ENC_SCRATCH_WORDS (67)
static uint32_t g_nrf_encrypt_scratchpad[NRF_ENC_SCRATCH_WORDS];
struct nrf_ccm_data
{
uint8_t key[16];
uint64_t pkt_counter;
uint8_t dir_bit;
uint8_t iv[8];
} __attribute__((packed));
struct nrf_ccm_data g_nrf_ccm_data;
#endif
#if MYNEWT_VAL(BLE_LL_PHY)
/* Packet start offset (in usecs). This is the preamble plus access address.
* For LE Coded PHY this also includes CI and TERM1. */
static uint32_t
ble_phy_mode_pdu_start_off(int phy_mode)
{
return g_ble_phy_mode_pkt_start_off[phy_mode];
}
#if NRF52_ERRATA_191_ENABLE_WORKAROUND
static bool
ble_phy_mode_is_coded(uint8_t phy_mode)
{
return (phy_mode == BLE_PHY_MODE_CODED_125KBPS) ||
(phy_mode == BLE_PHY_MODE_CODED_500KBPS);
}
static void
phy_nrf52_errata_191(uint8_t new_phy_mode)
{
bool from_coded = ble_phy_mode_is_coded(g_ble_phy_data.phy_cur_phy_mode);
bool to_coded = ble_phy_mode_is_coded(new_phy_mode);
/* [191] RADIO: High packet error rate in BLE Long Range mode
* Should be applied only if switching to/from LE Coded, no need to apply
* on each mode change.
*/
if (from_coded == to_coded) {
return;
}
if (to_coded) {
*(volatile uint32_t *)0x40001740 =
((*((volatile uint32_t *)0x40001740)) & 0x7fff00ff) |
0x80000000 | (((uint32_t)(196)) << 8);
} else {
*(volatile uint32_t *) 0x40001740 =
((*((volatile uint32_t *) 0x40001740)) & 0x7fffffff);
}
}
#endif
static void
ble_phy_mode_apply(uint8_t phy_mode)
{
if (phy_mode == g_ble_phy_data.phy_cur_phy_mode) {
return;
}
#if NRF52_ERRATA_191_ENABLE_WORKAROUND
if (nrf52_errata_191()) {
phy_nrf52_errata_191(phy_mode);
}
#endif
switch (phy_mode) {
case BLE_PHY_MODE_1M:
NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_1Mbit;
#ifdef NRF53_SERIES
*((volatile uint32_t *)0x41008588) = *((volatile uint32_t *)0x01FF0080);
#endif
NRF_RADIO->PCNF0 = NRF_PCNF0_1M;
break;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_2M_PHY)
case BLE_PHY_MODE_2M:
NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_2Mbit;
#ifdef NRF53_SERIES
*((volatile uint32_t *)0x41008588) = *((volatile uint32_t *)0x01FF0084);
#endif
NRF_RADIO->PCNF0 = NRF_PCNF0_2M;
break;
#endif
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
case BLE_PHY_MODE_CODED_125KBPS:
NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_LR125Kbit;
#ifdef NRF53_SERIES
*((volatile uint32_t *)0x41008588) = *((volatile uint32_t *)0x01FF0080);
#endif
NRF_RADIO->PCNF0 = NRF_PCNF0_CODED;
break;
case BLE_PHY_MODE_CODED_500KBPS:
NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_LR500Kbit;
#ifdef NRF53_SERIES
*((volatile uint32_t *)0x41008588) = *((volatile uint32_t *)0x01FF0080);
#endif
NRF_RADIO->PCNF0 = NRF_PCNF0_CODED;
break;
#endif
default:
assert(0);
}
g_ble_phy_data.phy_cur_phy_mode = phy_mode;
}
void
ble_phy_mode_set(uint8_t tx_phy_mode, uint8_t rx_phy_mode)
{
g_ble_phy_data.phy_tx_phy_mode = tx_phy_mode;
g_ble_phy_data.phy_rx_phy_mode = rx_phy_mode;
}
#else
static uint32_t
ble_phy_mode_pdu_start_off(int phy_mode)
{
return 40;
}
#endif
static int
ble_phy_get_cur_phy(void)
{
#if MYNEWT_VAL(BLE_LL_PHY)
switch (g_ble_phy_data.phy_cur_phy_mode) {
case BLE_PHY_MODE_1M:
return BLE_PHY_1M;
case BLE_PHY_MODE_2M:
return BLE_PHY_2M;
case BLE_PHY_MODE_CODED_125KBPS:
case BLE_PHY_MODE_CODED_500KBPS:
return BLE_PHY_CODED;
default:
assert(0);
return -1;
}
#else
return BLE_PHY_1M;
#endif
}
/**
* Copies the data from the phy receive buffer into a mbuf chain.
*
* @param dptr Pointer to receive buffer
* @param rxpdu Pointer to already allocated mbuf chain
*
* NOTE: the packet header already has the total mbuf length in it. The
* lengths of the individual mbufs are not set prior to calling.
*
*/
void
ble_phy_rxpdu_copy(uint8_t *dptr, struct os_mbuf *rxpdu)
{
uint32_t rem_len;
uint32_t copy_len;
uint32_t block_len;
uint32_t block_rem_len;
void *dst;
void *src;
struct os_mbuf * om;
/* Better be aligned */
assert(((uint32_t)dptr & 3) == 0);
block_len = rxpdu->om_omp->omp_databuf_len;
rem_len = OS_MBUF_PKTHDR(rxpdu)->omp_len;
src = dptr;
/*
* Setup for copying from first mbuf which is shorter due to packet header
* and extra leading space
*/
copy_len = block_len - rxpdu->om_pkthdr_len - 4;
om = rxpdu;
dst = om->om_data;
while (true) {
/*
* Always copy blocks of length aligned to word size, only last mbuf
* will have remaining non-word size bytes appended.
*/
block_rem_len = copy_len;
copy_len = min(copy_len, rem_len);
copy_len &= ~3;
dst = om->om_data;
om->om_len = copy_len;
rem_len -= copy_len;
block_rem_len -= copy_len;
#if BABBLESIM
memcpy(dst, src, copy_len);
dst += copy_len;
src += copy_len;
#else
__asm__ volatile (".syntax unified \n"
" mov r4, %[len] \n"
" b 2f \n"
"1: ldr r3, [%[src], %[len]] \n"
" str r3, [%[dst], %[len]] \n"
"2: subs %[len], #4 \n"
" bpl 1b \n"
" adds %[src], %[src], r4 \n"
" adds %[dst], %[dst], r4 \n"
: [dst] "+r" (dst), [src] "+r" (src),
[len] "+r" (copy_len)
:
: "r3", "r4", "memory"
);
#endif
if ((rem_len < 4) && (block_rem_len >= rem_len)) {
break;
}
/* Move to next mbuf */
om = SLIST_NEXT(om, om_next);
copy_len = block_len;
}
/* Copy remaining bytes, if any, to last mbuf */
om->om_len += rem_len;
#if BABBLESIM
memcpy(dst, src, rem_len);
#else
__asm__ volatile (".syntax unified \n"
" b 2f \n"
"1: ldrb r3, [%[src], %[len]] \n"
" strb r3, [%[dst], %[len]] \n"
"2: subs %[len], #1 \n"
" bpl 1b \n"
: [len] "+r" (rem_len)
: [dst] "r" (dst), [src] "r" (src)
: "r3", "memory"
);
#endif
/* Copy header */
memcpy(BLE_MBUF_HDR_PTR(rxpdu), &g_ble_phy_data.rxhdr,
sizeof(struct ble_mbuf_hdr));
}
/**
* Called when we want to wait if the radio is in either the rx or tx
* disable states. We want to wait until that state is over before doing
* anything to the radio
*/
static void
nrf_wait_disabled(void)
{
uint32_t state;
state = NRF_RADIO->STATE;
if (state != RADIO_STATE_STATE_Disabled) {
if ((state == RADIO_STATE_STATE_RxDisable) ||
(state == RADIO_STATE_STATE_TxDisable)) {
/* This will end within a short time (6 usecs). Just poll */
while (NRF_RADIO->STATE == state) {
/* If this fails, something is really wrong. Should last
* no more than 6 usecs */
#if BABBLESIM
tm_tick();
#endif
}
}
}
}
#if MYNEWT_VAL(BLE_PHY_VARIABLE_TIFS)
void
ble_phy_tifs_set(uint16_t tifs)
{
g_ble_phy_data.tifs = tifs;
}
#endif
/**
*
*
*/
static int
ble_phy_set_start_time(uint32_t cputime, uint8_t rem_us, bool tx)
{
uint32_t next_cc;
uint32_t cur_cc;
uint32_t cntr;
uint32_t delta;
int radio_rem_us;
#if PHY_USE_FEM
int fem_rem_us = 0;
#endif
int rem_us_corr;
int min_rem_us;
/* Calculate rem_us for radio and FEM enable. The result may be a negative
* value, but we'll adjust later.
*/
if (tx) {
radio_rem_us = rem_us - BLE_PHY_T_TXENFAST -
g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode];
#if PHY_USE_FEM_PA
fem_rem_us = rem_us - MYNEWT_VAL(BLE_FEM_PA_TURN_ON_US);
#endif
} else {
radio_rem_us = rem_us - BLE_PHY_T_TXENFAST;
#if PHY_USE_FEM_LNA
fem_rem_us = rem_us - MYNEWT_VAL(BLE_FEM_LNA_TURN_ON_US);
#endif
}
#if PHY_USE_FEM
min_rem_us = min(radio_rem_us, fem_rem_us);
#else
min_rem_us = radio_rem_us;
#endif
/* We need to adjust rem_us values, so they are >=1 for TIMER0 compare
* event to be triggered.
*
* If FEM is not enabled, calculated rem_us is -45<=rem_us<=-15 since we
* only had to adjust earlier for ramp-up and txdelay, i.e. 40+5=45us in
* worst case, so we adjust by 1 or 2 tick(s) only.
*
* If FEM is enabled, turn on time may be a bit longer, so we also allow to
* adjust by 3 ticks so up to 90us which should be enough. If needed, we
* can extend this by another tick but having FEM with turn on time >90us
* means transition may become tricky.
*/
if ((PHY_USE_FEM) && (min_rem_us <= -61)) {
cputime -= 3;
rem_us_corr = 91;
} else if (min_rem_us <= -30) {
/* rem_us is -60..-30 */
cputime -= 2;
rem_us_corr = 61;
} else {
/* rem_us is -29..0 */
cputime -= 1;
rem_us_corr = 30;
}
/*
* Can we set the RTC compare to start TIMER0? We can do it if:
* a) Current compare value is not N+1 or N+2 ticks from current
* counter.
* b) The value we want to set is not at least N+2 from current
* counter.
*
* NOTE: since the counter can tick 1 while we do these calculations we
* need to account for it.
*/
next_cc = cputime & 0xffffff;
cur_cc = NRF_RTC0->CC[0];
cntr = NRF_RTC0->COUNTER;
delta = (cur_cc - cntr) & 0xffffff;
if ((delta <= 3) && (delta != 0)) {
return -1;
}
delta = (next_cc - cntr) & 0xffffff;
if ((delta & 0x800000) || (delta < 3)) {
return -1;
}
/* Clear and set TIMER0 to fire off at proper time */
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CLEAR);
nrf_timer_cc_set(NRF_TIMER0, 0, radio_rem_us + rem_us_corr);
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
#if PHY_USE_FEM
if (fem_rem_us) {
nrf_timer_cc_set(NRF_TIMER0, 2, fem_rem_us + rem_us_corr);
NRF_TIMER0->EVENTS_COMPARE[2] = 0;
}
#endif
/* Set RTC compare to start TIMER0 */
NRF_RTC0->EVENTS_COMPARE[0] = 0;
nrf_rtc_cc_set(NRF_RTC0, 0, next_cc);
nrf_rtc_event_enable(NRF_RTC0, RTC_EVTENSET_COMPARE0_Msk);
/* Enable PPI */
#if PHY_USE_FEM
if (fem_rem_us) {
if (tx) {
#if PHY_USE_FEM_PA
phy_fem_enable_pa();
#endif
} else {
#if PHY_USE_FEM_LNA
phy_fem_enable_lna();
#endif
}
}
#endif
phy_ppi_rtc0_compare0_to_timer0_start_enable();
/* Store the cputime at which we set the RTC */
g_ble_phy_data.phy_start_cputime = cputime;
return 0;
}
static int
ble_phy_set_start_now(void)
{
os_sr_t sr;
uint32_t now;
uint32_t radio_rem_us;
#if PHY_USE_FEM_LNA
uint32_t fem_rem_us;
#endif
OS_ENTER_CRITICAL(sr);
/* We need to set TIMER0 compare registers to at least 1 as otherwise
* compare event won't be triggered. Event (FEM/radio) that have to be
* triggered first is set to 1, other event is set to 1+diff.
*
* Note that this is only used for rx, so only need to handle LNA.
*/
#if PHY_USE_FEM_LNA
if (MYNEWT_VAL(BLE_FEM_LNA_TURN_ON_US) > BLE_PHY_T_RXENFAST) {
radio_rem_us = 1 + MYNEWT_VAL(BLE_FEM_LNA_TURN_ON_US) -
BLE_PHY_T_RXENFAST;
fem_rem_us = 1;
} else {
radio_rem_us = 1;
fem_rem_us = 1 + BLE_PHY_T_RXENFAST -
MYNEWT_VAL(BLE_FEM_LNA_TURN_ON_US);
}
#else
radio_rem_us = 1;
#endif
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CLEAR);
nrf_timer_cc_set(NRF_TIMER0, 0, radio_rem_us);
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
#if PHY_USE_FEM_LNA
nrf_timer_cc_set(NRF_TIMER0, 2, fem_rem_us);
NRF_TIMER0->EVENTS_COMPARE[2] = 0;
#endif
/*
* Set RTC compare to start TIMER0. We need to set it to at least N+2 ticks
* from current value to guarantee triggering compare event, but let's set
* it to N+3 to account for possible extra tick on RTC0 during these
* operations.
*/
now = os_cputime_get32();
NRF_RTC0->EVENTS_COMPARE[0] = 0;
nrf_rtc_cc_set(NRF_RTC0, 0, (now + 3) & 0xffffff);
nrf_rtc_event_enable(NRF_RTC0, RTC_EVTENSET_COMPARE0_Msk);
#if PHY_USE_FEM_LNA
phy_fem_enable_lna();
#endif
/* Enable PPI */
phy_ppi_rtc0_compare0_to_timer0_start_enable();
/*
* Store the cputime at which we set the RTC
*
* XXX Compare event may be triggered on previous CC value (if it was set to
* less than N+2) so in rare cases actual start time may be 2 ticks earlier
* than what we expect. Since this is only used on RX, it may cause AUX scan
* to be scheduled 1 or 2 ticks too late so we'll miss it - it's acceptable
* for now.
*/
g_ble_phy_data.phy_start_cputime = now + 3;
OS_EXIT_CRITICAL(sr);
return 0;
}
/**
* Function is used to set PPI so that we can time out waiting for a reception
* to occur. This happens for two reasons: we have sent a packet and we are
* waiting for a response (txrx should be set to ENABLE_TXRX) or we are
* starting a connection event and we are a slave and we are waiting for the
* master to send us a packet (txrx should be set to ENABLE_RX).
*
* NOTE: when waiting for a txrx turn-around, wfr_usecs is not used as there
* is no additional time to wait; we know when we should receive the address of
* the received frame.
*
* @param txrx Flag denoting if this wfr is a txrx turn-around or not.
* @param tx_phy_mode phy mode for last TX (only valid for TX->RX)
* @param wfr_usecs Amount of usecs to wait.
*/
void
ble_phy_wfr_enable(int txrx, uint8_t tx_phy_mode, uint32_t wfr_usecs)
{
uint32_t end_time;
uint8_t phy;
uint16_t tifs;
phy = g_ble_phy_data.phy_cur_phy_mode;
#if MYNEWT_VAL(BLE_PHY_VARIABLE_TIFS)
tifs = g_ble_phy_data.tifs;
#else
tifs = BLE_LL_IFS;
#endif
if (txrx == BLE_PHY_WFR_ENABLE_TXRX) {
/* RX shall start exactly T_IFS after TX end captured in CC[2] */
end_time = NRF_TIMER0->CC[2] + tifs;
/* Adjust for delay between EVENT_END and actual TX end time */
end_time += g_ble_phy_t_txenddelay[tx_phy_mode];
/* Wait a bit longer due to allowed active clock accuracy */
end_time += 2;
/*
* It's possible that we'll capture PDU start time at the end of timer
* cycle and since wfr expires at the beginning of calculated timer
* cycle it can be almost 1 usec too early. Let's compensate for this
* by waiting 1 usec more.
*/
end_time += 1;
end_time += MYNEWT_VAL(BLE_PHY_EXTENDED_TIFS);
} else {
/*
* RX shall start no later than wfr_usecs after RX enabled.
* CC[0] is the time of RXEN so adjust for radio ram-up.
* Do not add jitter since this is already covered by LL.
*/
end_time = NRF_TIMER0->CC[0] + BLE_PHY_T_RXENFAST + wfr_usecs;
}
/*
* Note: on LE Coded EVENT_ADDRESS is fired after TERM1 is received, so
* we are actually calculating relative to start of packet payload
* which is fine.
*/
/* Adjust for receiving access address since this triggers EVENT_ADDRESS */
end_time += ble_phy_mode_pdu_start_off(phy);
/* Adjust for delay between actual access address RX and EVENT_ADDRESS */
end_time += g_ble_phy_t_rxaddrdelay[phy];
/* wfr_secs is the time from rxen until timeout */
nrf_timer_cc_set(NRF_TIMER0, 3, end_time);
NRF_TIMER0->EVENTS_COMPARE[3] = 0;
/* Enable wait for response PPI */
phy_ppi_wfr_enable();
/*
* It may happen that if CPU is halted for a brief moment (e.g. during flash
* erase or write), TIMER0 already counted past CC[3] and thus wfr will not
* fire as expected. In case this happened, let's just disable PPIs for wfr
* and trigger wfr manually (i.e. disable radio).
*
* Note that the same applies to RX start time set in CC[0] but since it
* should fire earlier than wfr, fixing wfr is enough.
*
* CC[1] is only used as a reference on RX start, we do not need it here so
* it can be used to read TIMER0 counter.
*/
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CAPTURE1);
if (NRF_TIMER0->CC[1] > NRF_TIMER0->CC[3]) {
phy_ppi_wfr_disable();
nrf_radio_task_trigger(NRF_RADIO, NRF_RADIO_TASK_DISABLE);
}
}
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
static uint32_t
ble_phy_get_ccm_datarate(void)
{
#if MYNEWT_VAL(BLE_LL_PHY)
switch (g_ble_phy_data.phy_cur_phy_mode) {
case BLE_PHY_MODE_1M:
return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos;
case BLE_PHY_MODE_2M:
return CCM_MODE_DATARATE_2Mbit << CCM_MODE_DATARATE_Pos;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
case BLE_PHY_MODE_CODED_125KBPS:
return CCM_MODE_DATARATE_125Kbps << CCM_MODE_DATARATE_Pos;
case BLE_PHY_MODE_CODED_500KBPS:
return CCM_MODE_DATARATE_500Kbps << CCM_MODE_DATARATE_Pos;
#endif
}
assert(0);
return 0;
#else
return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos;
#endif
}
#endif
/**
* Setup transceiver for receive.
*/
static void
ble_phy_rx_xcvr_setup(void)
{
uint8_t *dptr;
dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
dptr += 3;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
if (g_ble_phy_data.phy_encrypted) {
NRF_RADIO->PACKETPTR = (uint32_t)&g_ble_phy_enc_buf[0];
NRF_CCM->INPTR = (uint32_t)&g_ble_phy_enc_buf[0];
NRF_CCM->OUTPTR = (uint32_t)dptr;
NRF_CCM->SCRATCHPTR = (uint32_t)&g_nrf_encrypt_scratchpad[0];
NRF_CCM->MODE = CCM_MODE_LENGTH_Msk | CCM_MODE_MODE_Decryption |
ble_phy_get_ccm_datarate();
NRF_CCM->CNFPTR = (uint32_t)&g_nrf_ccm_data;
NRF_CCM->SHORTS = 0;
NRF_CCM->EVENTS_ERROR = 0;
NRF_CCM->EVENTS_ENDCRYPT = 0;
nrf_ccm_task_trigger(NRF_CCM, NRF_CCM_TASK_KSGEN);
phy_ppi_radio_address_to_ccm_crypt_enable();
} else {
NRF_RADIO->PACKETPTR = (uint32_t)dptr;
}
#else
NRF_RADIO->PACKETPTR = (uint32_t)dptr;
#endif
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
if (g_ble_phy_data.phy_privacy) {
NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Enabled;
NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
NRF_AAR->SCRATCHPTR = (uint32_t)&g_ble_phy_data.phy_aar_scratch;
NRF_AAR->EVENTS_END = 0;
NRF_AAR->EVENTS_RESOLVED = 0;
NRF_AAR->EVENTS_NOTRESOLVED = 0;
} else {
if (g_ble_phy_data.phy_encrypted == 0) {
NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Disabled;
}
}
#endif
/* Turn off trigger TXEN on output compare match and AAR on bcmatch */
phy_ppi_timer0_compare0_to_radio_txen_disable();
phy_ppi_radio_bcmatch_to_aar_start_disable();
/* Reset the rx started flag. Used for the wait for response */
g_ble_phy_data.phy_rx_started = 0;
g_ble_phy_data.phy_state = BLE_PHY_STATE_RX;
#if MYNEWT_VAL(BLE_LL_PHY)
/*
* On Coded PHY there are CI and TERM1 fields before PDU starts so we need
* to take this into account when setting up BCC.
*/
if (g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_125KBPS ||
g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_500KBPS) {
g_ble_phy_data.phy_bcc_offset = 5;
} else {
g_ble_phy_data.phy_bcc_offset = 0;
}
#else
g_ble_phy_data.phy_bcc_offset = 0;
#endif
/* I want to know when 1st byte received (after address) */
nrf_radio_bcc_set(NRF_RADIO, 8 + g_ble_phy_data.phy_bcc_offset); /* in bits */
NRF_RADIO->EVENTS_ADDRESS = 0;
NRF_RADIO->EVENTS_DEVMATCH = 0;
NRF_RADIO->EVENTS_BCMATCH = 0;
NRF_RADIO->EVENTS_RSSIEND = 0;
NRF_RADIO->EVENTS_CRCOK = 0;
NRF_RADIO->SHORTS = RADIO_SHORTS_END_DISABLE_Msk |
RADIO_SHORTS_READY_START_Msk |
RADIO_SHORTS_ADDRESS_BCSTART_Msk |
RADIO_SHORTS_ADDRESS_RSSISTART_Msk |
RADIO_SHORTS_DISABLED_RSSISTOP_Msk;
nrf_radio_int_enable(NRF_RADIO, RADIO_INTENSET_ADDRESS_Msk |
RADIO_INTENSET_DISABLED_Msk);
}
/**
* Called from interrupt context when the transmit ends
*
*/
static void
ble_phy_tx_end_isr(void)
{
uint8_t tx_phy_mode;
uint8_t was_encrypted;
uint8_t transition;
uint32_t rx_time;
uint32_t tx_time;
#if PHY_USE_FEM
uint32_t fem_time;
#endif
uint32_t radio_time;
uint16_t tifs;
/* Store PHY on which we've just transmitted smth */
tx_phy_mode = g_ble_phy_data.phy_cur_phy_mode;
/* If this transmission was encrypted we need to remember it */
was_encrypted = g_ble_phy_data.phy_encrypted;
(void)was_encrypted;
/* Better be in TX state! */
assert(g_ble_phy_data.phy_state == BLE_PHY_STATE_TX);
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/*
* XXX: not sure what to do. We had a HW error during transmission.
* For now I just count a stat but continue on like all is good.
*/
if (was_encrypted) {
if (NRF_CCM->EVENTS_ERROR) {
STATS_INC(ble_phy_stats, tx_hw_err);
NRF_CCM->EVENTS_ERROR = 0;
}
}
#endif
#if MYNEWT_VAL(BLE_PHY_VARIABLE_TIFS)
tifs = g_ble_phy_data.tifs;
g_ble_phy_data.tifs = BLE_LL_IFS;
#else
tifs = BLE_LL_IFS;
#endif
transition = g_ble_phy_data.phy_transition;
if (g_ble_phy_data.txend_cb) {
g_ble_phy_data.txend_cb(g_ble_phy_data.txend_arg);
}
if (transition == BLE_PHY_TRANSITION_TX_RX) {
#if MYNEWT_VAL(BLE_LL_PHY)
ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode);
#endif
/* Packet pointer needs to be reset. */
ble_phy_rx_xcvr_setup();
ble_phy_wfr_enable(BLE_PHY_WFR_ENABLE_TXRX, tx_phy_mode, 0);
/* Schedule RX exactly T_IFS after TX end captured in CC[2] */
rx_time = NRF_TIMER0->CC[2] + tifs;
/* Adjust for delay between EVENT_END and actual TX end time */
rx_time += g_ble_phy_t_txenddelay[tx_phy_mode];
/* Start listening a bit earlier due to allowed active clock accuracy */
rx_time -= 2;
#if PHY_USE_FEM_LNA
fem_time = rx_time - MYNEWT_VAL(BLE_FEM_LNA_TURN_ON_US);
nrf_timer_cc_set(NRF_TIMER0, 2, fem_time);
NRF_TIMER0->EVENTS_COMPARE[2] = 0;
phy_fem_enable_lna();
#endif
radio_time = rx_time - BLE_PHY_T_RXENFAST;
nrf_timer_cc_set(NRF_TIMER0, 0, radio_time);
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
phy_ppi_timer0_compare0_to_radio_rxen_enable();
/* In case TIMER0 did already count past CC[0] and/or CC[2], radio
* and/or LNA may not be enabled. In any case we won't be stuck since
* wfr will cancel rx if needed.
*
* FIXME failing to enable LNA may result in unexpected RSSI drop in
* case we still rxd something, so perhaps we could check it here
*/
} else if (transition == BLE_PHY_TRANSITION_TX_TX) {
if (g_ble_phy_data.txtx_time_anchor) {
/* Schedule next TX relative to current TX end. TX end timestamp is
* captured in CC[2].
*/
tx_time = NRF_TIMER0->CC[2] + g_ble_phy_data.txtx_time_us;
} else {
/* Schedule next TX relative to current TX start. AA timestamp is
* captured in CC[1], we need to adjust for sync word to get TX
* start.
*/
tx_time = NRF_TIMER0->CC[1] - ble_ll_pdu_syncword_us(tx_phy_mode) +
g_ble_phy_data.txtx_time_us;
/* Adjust for delay between EVENT_ADDRESS and actual address TX time */
/* FIXME assume this is the same as EVENT_END to end, but we should
* measure this to be sure */
tx_time += g_ble_phy_t_txenddelay[tx_phy_mode];
}
/* Adjust for delay between EVENT_END and actual TX end time */
tx_time += g_ble_phy_t_txenddelay[tx_phy_mode];
#if PHY_USE_FEM_PA
fem_time = tx_time - MYNEWT_VAL(BLE_FEM_PA_TURN_ON_US);
#endif
/* Adjust for delay between EVENT_READY and actual TX start time */
tx_time -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode];
radio_time = tx_time - BLE_PHY_T_TXENFAST;
nrf_timer_cc_set(NRF_TIMER0, 0, radio_time);
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
phy_ppi_timer0_compare0_to_radio_txen_enable();
#if PHY_USE_FEM_PA
nrf_timer_cc_set(NRF_TIMER0, 2, fem_time);
NRF_TIMER0->EVENTS_COMPARE[2] = 0;
phy_fem_enable_pa();
#endif
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CAPTURE3);
if (NRF_TIMER0->CC[3] > NRF_TIMER0->CC[0]) {
phy_ppi_timer0_compare0_to_radio_txen_disable();
g_ble_phy_data.phy_transition_late = 1;
}
} else {
/*
* XXX: not sure we need to stop the timer here all the time. Or that
* it should be stopped here.
*/
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_STOP);
NRF_TIMER0->TASKS_SHUTDOWN = 1;
phy_ppi_wfr_disable();
phy_ppi_timer0_compare0_to_radio_txen_disable();
phy_ppi_rtc0_compare0_to_timer0_start_disable();
assert(transition == BLE_PHY_TRANSITION_NONE);
}
}
static inline uint8_t
ble_phy_get_cur_rx_phy_mode(void)
{
uint8_t phy;
phy = g_ble_phy_data.phy_cur_phy_mode;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
/*
* For Coded PHY mode can be set to either codings since actual coding is
* set in packet header. However, here we need actual coding of received
* packet as this determines pipeline delays so need to figure this out
* using CI field.
*/
if ((phy == BLE_PHY_MODE_CODED_125KBPS) ||
(phy == BLE_PHY_MODE_CODED_500KBPS)) {
phy = NRF_RADIO->PDUSTAT & RADIO_PDUSTAT_CISTAT_Msk ?
BLE_PHY_MODE_CODED_500KBPS :
BLE_PHY_MODE_CODED_125KBPS;
}
#endif
return phy;
}
static void
ble_phy_rx_end_isr(void)
{
int rc;
uint8_t *dptr;
uint8_t crcok;
uint32_t tx_time;
#if PHY_USE_FEM_PA
uint32_t fem_time;
#endif
uint32_t radio_time;
uint16_t tifs;
struct ble_mbuf_hdr *ble_hdr;
bool is_late;
/* Disable automatic RXEN */
phy_ppi_timer0_compare0_to_radio_rxen_disable();
/* Set RSSI and CRC status flag in header */
ble_hdr = &g_ble_phy_data.rxhdr;
assert(NRF_RADIO->EVENTS_RSSIEND != 0);
ble_hdr->rxinfo.rssi = (-1 * NRF_RADIO->RSSISAMPLE);
dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
dptr += 3;
/* Count PHY crc errors and valid packets */
crcok = NRF_RADIO->EVENTS_CRCOK;
if (!crcok) {
STATS_INC(ble_phy_stats, rx_crc_err);
} else {
STATS_INC(ble_phy_stats, rx_valid);
ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_CRC_OK;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
if (g_ble_phy_data.phy_encrypted) {
while (NRF_CCM->EVENTS_ENDCRYPT == 0) {
/* Make sure CCM finished */
};
/* Only set MIC failure flag if frame is not zero length */
if ((dptr[1] != 0) && (NRF_CCM->MICSTATUS == 0)) {
ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_MIC_FAILURE;
}
/*
* XXX: not sure how to deal with this. This should not
* be a MIC failure but we should not hand it up. I guess
* this is just some form of rx error and that is how we
* handle it? For now, just set CRC error flags
*/
if (NRF_CCM->EVENTS_ERROR) {
STATS_INC(ble_phy_stats, rx_hw_err);
ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK;
}
}
#endif
}
#if MYNEWT_VAL(BLE_LL_PHY)
ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode);
#endif
/*
* Let's schedule TX now and we will just cancel it after processing RXed
* packet if we don't need TX.
*
* We need this to initiate connection in case AUX_CONNECT_REQ was sent on
* LE Coded S8. In this case the time we process RXed packet is roughly the
* same as the limit when we need to have TX scheduled (i.e. TIMER0 and PPI
* armed) so we may simply miss the slot and set the timer in the past.
*
* When TX is scheduled in advance, we may event process packet a bit longer
* during radio ramp-up - this gives us extra 40 usecs which is more than
* enough.
*/
#if MYNEWT_VAL(BLE_PHY_VARIABLE_TIFS)
tifs = g_ble_phy_data.tifs;
g_ble_phy_data.tifs = BLE_LL_IFS;
#else
tifs = BLE_LL_IFS;
#endif
/* Schedule TX exactly T_IFS after RX end captured in CC[2] */
tx_time = NRF_TIMER0->CC[2] + tifs;
/* Adjust for delay between actual RX end time and EVENT_END */
tx_time -= g_ble_phy_t_rxenddelay[ble_hdr->rxinfo.phy_mode];
#if PHY_USE_FEM_PA
fem_time = tx_time - MYNEWT_VAL(BLE_FEM_PA_TURN_ON_US);
#endif
/* Adjust for delay between EVENT_READY and actual TX start time */
tx_time -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode];
radio_time = tx_time - BLE_PHY_T_TXENFAST;
nrf_timer_cc_set(NRF_TIMER0, 0, radio_time);
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
phy_ppi_timer0_compare0_to_radio_txen_enable();
#if PHY_USE_FEM_PA
nrf_timer_cc_set(NRF_TIMER0, 2, fem_time);
NRF_TIMER0->EVENTS_COMPARE[2] = 0;
phy_fem_enable_pa();
#endif
/* Need to check if TIMER0 did not already count past CC[0] and/or CC[2], so
* we're not stuck waiting for events in case radio and/or PA was not
* started. If event was triggered we're fine regardless of timer value.
*
* Note: CC[3] is used only for wfr which we do not need here.
*/
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CAPTURE3);
is_late = (NRF_TIMER0->CC[3] > radio_time) && !NRF_TIMER0->EVENTS_COMPARE[0];
#if PHY_USE_FEM_PA
is_late = is_late ||
((NRF_TIMER0->CC[3] > fem_time) && !NRF_TIMER0->EVENTS_COMPARE[2]);
#endif
if (is_late) {
phy_ppi_timer0_compare0_to_radio_txen_disable();
g_ble_phy_data.phy_transition_late = 1;
}
/*
* XXX: This is a horrible ugly hack to deal with the RAM S1 byte
* that is not sent over the air but is present here. Simply move the
* data pointer to deal with it. Fix this later.
*/
dptr[2] = dptr[1];
dptr[1] = dptr[0];
rc = ble_ll_rx_end(dptr + 1, ble_hdr);
if (rc < 0) {
ble_phy_disable();
}
}
static bool
ble_phy_rx_start_isr(void)
{
int rc;
uint32_t state;
uint32_t usecs;
uint32_t pdu_usecs;
uint32_t ticks;
struct ble_mbuf_hdr *ble_hdr;
uint8_t *dptr;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
int adva_offset;
#endif
dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
/* Clear events and clear interrupt */
NRF_RADIO->EVENTS_ADDRESS = 0;
nrf_radio_int_disable(NRF_RADIO, RADIO_INTENCLR_ADDRESS_Msk);
/* Clear wfr timer channels */
phy_ppi_wfr_disable();
/* Initialize the ble mbuf header */
ble_hdr = &g_ble_phy_data.rxhdr;
ble_hdr->rxinfo.flags = ble_ll_state_get();
ble_hdr->rxinfo.channel = g_ble_phy_data.phy_chan;
ble_hdr->rxinfo.handle = 0;
ble_hdr->rxinfo.phy = ble_phy_get_cur_phy();
ble_hdr->rxinfo.phy_mode = ble_phy_get_cur_rx_phy_mode();
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_EXT_ADV)
ble_hdr->rxinfo.user_data = NULL;
#endif
/*
* Calculate accurate packets start time (with remainder)
*
* We may start receiving packet somewhere during preamble in which case
* it is possible that actual transmission started before TIMER0 was
* running - need to take this into account.
*/
ble_hdr->beg_cputime = g_ble_phy_data.phy_start_cputime;
usecs = NRF_TIMER0->CC[1];
pdu_usecs = ble_phy_mode_pdu_start_off(ble_hdr->rxinfo.phy_mode) +
g_ble_phy_t_rxaddrdelay[ble_hdr->rxinfo.phy_mode];
if (usecs < pdu_usecs) {
g_ble_phy_data.phy_start_cputime--;
usecs += 30;
}
usecs -= pdu_usecs;
ticks = os_cputime_usecs_to_ticks(usecs);
usecs -= os_cputime_ticks_to_usecs(ticks);
if (usecs == 31) {
usecs = 0;
++ticks;
}
ble_hdr->beg_cputime += ticks;
ble_hdr->rem_usecs = usecs;
/* XXX: I wonder if we always have the 1st byte. If we need to wait for
* rx chain delay, it could be 18 usecs from address interrupt. The
nrf52 may be able to get here early. */
/* Wait to get 1st byte of frame */
while (1) {
state = NRF_RADIO->STATE;
if (NRF_RADIO->EVENTS_BCMATCH != 0) {
break;
}
/*
* If state is disabled, we should have the BCMATCH. If not,
* something is wrong!
*/
if (state == RADIO_STATE_STATE_Disabled) {
nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
NRF_RADIO->SHORTS = 0;
return false;
}
#if BABBLESIM
tm_tick();
#endif
}
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
/*
* If privacy is enabled and received PDU has TxAdd bit set (i.e. random
* address) we try to resolve address using AAR.
*/
if (g_ble_phy_data.phy_privacy && (dptr[3] & 0x40)) {
/*
* AdvA is located at 4th octet in RX buffer (after S0, length an S1
* fields). In case of extended advertising PDU we need to add 2 more
* octets for extended header.
*/
adva_offset = (dptr[3] & 0x0f) == 0x07 ? 2 : 0;
NRF_AAR->ADDRPTR = (uint32_t)(dptr + 3 + adva_offset);
/* Trigger AAR after last bit of AdvA is received */
NRF_RADIO->EVENTS_BCMATCH = 0;
phy_ppi_radio_bcmatch_to_aar_start_enable();
nrf_radio_bcc_set(NRF_RADIO, (BLE_LL_PDU_HDR_LEN + adva_offset +
BLE_DEV_ADDR_LEN) * 8 + g_ble_phy_data.phy_bcc_offset);
}
#endif
/* Call Link Layer receive start function */
rc = ble_ll_rx_start(dptr + 3,
g_ble_phy_data.phy_chan,
&g_ble_phy_data.rxhdr);
if (rc >= 0) {
/* Set rx started flag and enable rx end ISR */
g_ble_phy_data.phy_rx_started = 1;
} else {
/* Disable PHY */
ble_phy_disable();
STATS_INC(ble_phy_stats, rx_aborts);
}
/* Count rx starts */
STATS_INC(ble_phy_stats, rx_starts);
return true;
}
static void
ble_phy_isr(void)
{
uint32_t irq_en;
os_trace_isr_enter();
/* Read irq register to determine which interrupts are enabled */
irq_en = NRF_RADIO->INTENSET;
/*
* NOTE: order of checking is important! Possible, if things get delayed,
* we have both an ADDRESS and DISABLED interrupt in rx state. If we get
* an address, we disable the DISABLED interrupt.
*/
/* We get this if we have started to receive a frame */
if ((irq_en & RADIO_INTENCLR_ADDRESS_Msk) && NRF_RADIO->EVENTS_ADDRESS) {
/*
* wfr timer is calculated to expire at the exact time we should start
* receiving a packet (with 1 usec precision) so it is possible it will
* fire at the same time as EVENT_ADDRESS. If this happens, radio will
* be disabled while we are waiting for EVENT_BCCMATCH after 1st byte
* of payload is received and ble_phy_rx_start_isr() will fail. In this
* case we should not clear DISABLED irq mask so it will be handled as
* regular radio disabled event below. In other case radio was disabled
* on purpose and there's nothing more to handle so we can clear mask.
*/
if (ble_phy_rx_start_isr()) {
irq_en &= ~RADIO_INTENCLR_DISABLED_Msk;
}
}
/* Handle disabled event. This is enabled for both TX and RX. On RX, we
* need to check phy_rx_started flag to make sure we actually were receiving
* a PDU, otherwise this is due to wfr.
*/
if ((irq_en & RADIO_INTENCLR_DISABLED_Msk) && NRF_RADIO->EVENTS_DISABLED) {
BLE_LL_ASSERT(NRF_RADIO->EVENTS_END ||
((g_ble_phy_data.phy_state == BLE_PHY_STATE_RX) &&
!g_ble_phy_data.phy_rx_started));
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->EVENTS_DISABLED = 0;
nrf_radio_int_disable(NRF_RADIO, RADIO_INTENCLR_DISABLED_Msk);
switch (g_ble_phy_data.phy_state) {
case BLE_PHY_STATE_RX:
#if MYNEWT_VAL(BLE_FEM_LNA)
phy_ppi_fem_disable();
ble_fem_lna_disable();
#endif
if (g_ble_phy_data.phy_rx_started) {
ble_phy_rx_end_isr();
} else {
ble_ll_wfr_timer_exp(NULL);
}
break;
case BLE_PHY_STATE_TX:
#if MYNEWT_VAL(BLE_FEM_PA)
phy_ppi_fem_disable();
ble_fem_pa_disable();
#endif
ble_phy_tx_end_isr();
break;
default:
BLE_LL_ASSERT(0);
}
}
g_ble_phy_data.phy_transition_late = 0;
/* Count # of interrupts */
STATS_INC(ble_phy_stats, phy_isrs);
os_trace_isr_exit();
}
#if PHY_USE_HEADERMASK_WORKAROUND && MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
static void
ble_phy_ccm_isr(void)
{
volatile uint8_t *tx_buf = (uint8_t *)g_ble_phy_tx_buf;
if (NRF_CCM->EVENTS_ENDKSGEN) {
while (tx_buf[0] == 0xff);
tx_buf[0] = g_ble_phy_data.phy_headerbyte;
NRF_CCM->INTENCLR = CCM_INTENCLR_ENDKSGEN_Msk;
}
}
#endif
/**
* ble phy init
*
* Initialize the PHY.
*
* @return int 0: success; PHY error code otherwise
*/
int
ble_phy_init(void)
{
int rc;
/* Default phy to use is 1M */
g_ble_phy_data.phy_cur_phy_mode = BLE_PHY_MODE_1M;
g_ble_phy_data.phy_tx_phy_mode = BLE_PHY_MODE_1M;
g_ble_phy_data.phy_rx_phy_mode = BLE_PHY_MODE_1M;
/* Set phy channel to an invalid channel so first set channel works */
g_ble_phy_data.phy_chan = BLE_PHY_NUM_CHANS;
#if MYNEWT_VAL(BLE_PHY_VARIABLE_TIFS)
g_ble_phy_data.tifs = BLE_LL_IFS;
#endif
/* Toggle peripheral power to reset (just in case) */
nrf_radio_power_set(NRF_RADIO, false);
nrf_radio_power_set(NRF_RADIO, true);
#ifdef NRF53_SERIES
/* Errata 158: load trim values after toggling power */
for (uint32_t index = 0; index < 32ul &&
NRF_FICR_NS->TRIMCNF[index].ADDR != 0xFFFFFFFFul; index++) {
if (((uint32_t)NRF_FICR_NS->TRIMCNF[index].ADDR & 0xFFFFF000ul) == (volatile uint32_t)NRF_RADIO_NS) {
*((volatile uint32_t *)NRF_FICR_NS->TRIMCNF[index].ADDR) = NRF_FICR_NS->TRIMCNF[index].DATA;
}
}
*(volatile uint32_t *)(NRF_RADIO_NS_BASE + 0x774) =
(*(volatile uint32_t* )(NRF_RADIO_NS_BASE + 0x774) & 0xfffffffe) | 0x01000000;
#if NRF53_ERRATA_16_ENABLE_WORKAROUND
if (nrf53_errata_16()) {
/* [16] RADIO: POWER register is not functional */
NRF_RADIO_NS->SUBSCRIBE_TXEN = 0;
NRF_RADIO_NS->SUBSCRIBE_RXEN = 0;
NRF_RADIO_NS->SUBSCRIBE_DISABLE = 0;
}
#endif
#endif
/* Disable all interrupts */
nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
/* Set configuration registers */
NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_1Mbit;
NRF_RADIO->PCNF0 = NRF_PCNF0;
/* XXX: should maxlen be 251 for encryption? */
NRF_RADIO->PCNF1 = NRF_MAXLEN |
(RADIO_PCNF1_ENDIAN_Little << RADIO_PCNF1_ENDIAN_Pos) |
(NRF_BALEN << RADIO_PCNF1_BALEN_Pos) |
RADIO_PCNF1_WHITEEN_Msk;
/* Enable radio fast ramp-up */
NRF_RADIO->MODECNF0 |= (RADIO_MODECNF0_RU_Fast << RADIO_MODECNF0_RU_Pos) &
RADIO_MODECNF0_RU_Msk;
/* Set logical address 1 for TX and RX */
NRF_RADIO->TXADDRESS = 0;
NRF_RADIO->RXADDRESSES = (1 << 0);
/* Configure the CRC registers */
NRF_RADIO->CRCCNF = (RADIO_CRCCNF_SKIPADDR_Skip << RADIO_CRCCNF_SKIPADDR_Pos) | RADIO_CRCCNF_LEN_Three;
/* Configure BLE poly */
NRF_RADIO->CRCPOLY = 0x0000065B;
/* Configure IFS */
NRF_RADIO->TIFS = BLE_LL_IFS;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
nrf_ccm_int_disable(NRF_CCM, 0xffffffff);
NRF_CCM->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk;
NRF_CCM->EVENTS_ERROR = 0;
memset(g_nrf_encrypt_scratchpad, 0, sizeof(g_nrf_encrypt_scratchpad));
#if PHY_USE_HEADERMASK_WORKAROUND
NVIC_SetVector(CCM_AAR_IRQn, (uint32_t)ble_phy_ccm_isr);
NVIC_EnableIRQ(CCM_AAR_IRQn);
NRF_CCM->INTENCLR = CCM_INTENCLR_ENDKSGEN_Msk;;
#endif
#endif
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
g_ble_phy_data.phy_aar_scratch = 0;
NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
nrf_aar_int_disable(NRF_AAR, 0xffffffff);
NRF_AAR->EVENTS_END = 0;
NRF_AAR->EVENTS_RESOLVED = 0;
NRF_AAR->EVENTS_NOTRESOLVED = 0;
NRF_AAR->NIRK = 0;
#endif
/* TIMER0 setup for PHY when using RTC */
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_STOP);
NRF_TIMER0->TASKS_SHUTDOWN = 1;
NRF_TIMER0->BITMODE = 3; /* 32-bit timer */
NRF_TIMER0->MODE = 0; /* Timer mode */
NRF_TIMER0->PRESCALER = 4; /* gives us 1 MHz */
phy_ppi_init();
#if PHY_USE_DEBUG
phy_debug_init();
#endif
#if PHY_USE_FEM
phy_fem_init();
#endif
/* Set isr in vector table and enable interrupt */
#ifndef RIOT_VERSION
#ifdef FREERTOS
NVIC_SetPriority(RADIO_IRQn, 5);
#else
NVIC_SetPriority(RADIO_IRQn, 0);
#endif
#endif
#if MYNEWT
NVIC_SetVector(RADIO_IRQn, (uint32_t)ble_phy_isr);
#else
ble_npl_hw_set_isr(RADIO_IRQn, ble_phy_isr);
#endif
NVIC_EnableIRQ(RADIO_IRQn);
/* Register phy statistics */
if (!g_ble_phy_data.phy_stats_initialized) {
rc = stats_init_and_reg(STATS_HDR(ble_phy_stats),
STATS_SIZE_INIT_PARMS(ble_phy_stats,
STATS_SIZE_32),
STATS_NAME_INIT_PARMS(ble_phy_stats),
"ble_phy");
assert(rc == 0);
g_ble_phy_data.phy_stats_initialized = 1;
}
return 0;
}
/**
* Puts the phy into receive mode.
*
* @return int 0: success; BLE Phy error code otherwise
*/
static int
ble_phy_rx(void)
{
/*
* Check radio state.
*
* In case radio is now disabling we'll wait for it to finish, but if for
* any reason it's just in idle state we proceed with RX as usual since
* nRF52 radio can ramp-up from idle state as well.
*
* Note that TX and RX states values are the same except for 3rd bit so we
* can make a shortcut here when checking for idle state.
*/
nrf_wait_disabled();
if ((NRF_RADIO->STATE != RADIO_STATE_STATE_Disabled) &&
((NRF_RADIO->STATE & 0x07) != RADIO_STATE_STATE_RxIdle)) {
ble_phy_disable();
STATS_INC(ble_phy_stats, radio_state_errs);
return BLE_PHY_ERR_RADIO_STATE;
}
/* Make sure all interrupts are disabled */
nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
/* Clear events prior to enabling receive */
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->EVENTS_DISABLED = 0;
/* Setup for rx */
ble_phy_rx_xcvr_setup();
return 0;
}
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
void
ble_phy_encrypt_enable(const uint8_t *key)
{
memcpy(g_nrf_ccm_data.key, key, 16);
g_ble_phy_data.phy_encrypted = 1;
NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Disabled;
NRF_CCM->ENABLE = CCM_ENABLE_ENABLE_Enabled;
#ifdef NRF5340_XXAA
NRF_CCM->HEADERMASK = BLE_LL_PDU_HEADERMASK_DATA;
#endif
#if PHY_USE_HEADERMASK_WORKAROUND
g_ble_phy_data.phy_headermask = BLE_LL_PDU_HEADERMASK_DATA;
#endif
}
void
ble_phy_encrypt_header_mask_set(uint8_t mask)
{
#ifdef NRF5340_XXAA
NRF_CCM->HEADERMASK = mask;
#endif
#if PHY_USE_HEADERMASK_WORKAROUND
g_ble_phy_data.phy_headermask = mask;
#endif
}
void
ble_phy_encrypt_iv_set(const uint8_t *iv)
{
memcpy(g_nrf_ccm_data.iv, iv, 8);
}
void
ble_phy_encrypt_counter_set(uint64_t counter, uint8_t dir_bit)
{
g_nrf_ccm_data.pkt_counter = counter;
g_nrf_ccm_data.dir_bit = dir_bit;
}
void
ble_phy_encrypt_disable(void)
{
phy_ppi_radio_address_to_ccm_crypt_disable();
nrf_ccm_task_trigger(NRF_CCM, NRF_CCM_TASK_STOP);
NRF_CCM->EVENTS_ERROR = 0;
NRF_CCM->ENABLE = CCM_ENABLE_ENABLE_Disabled;
g_ble_phy_data.phy_encrypted = 0;
}
#endif
void
ble_phy_set_txend_cb(ble_phy_tx_end_func txend_cb, void *arg)
{
/* Set transmit end callback and arg */
g_ble_phy_data.txend_cb = txend_cb;
g_ble_phy_data.txend_arg = arg;
}
/**
* Called to set the start time of a transmission.
*
* This function is called to set the start time when we are not going from
* rx to tx automatically.
*
* NOTE: care must be taken when calling this function. The channel should
* already be set.
*
* @param cputime This is the tick at which the 1st bit of the preamble
* should be transmitted
* @param rem_usecs This is used only when the underlying timing uses a 32.768
* kHz crystal. It is the # of usecs from the cputime tick
* at which the first bit of the preamble should be
* transmitted.
* @return int
*/
int
ble_phy_tx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
{
int rc;
ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_TX, cputime, rem_usecs);
#if MYNEWT_VAL(BLE_LL_PHY)
ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode);
#endif
/* XXX: This should not be necessary, but paranoia is good! */
/* Clear timer0 compare to RXEN since we are transmitting */
phy_ppi_timer0_compare0_to_radio_rxen_disable();
if (ble_phy_set_start_time(cputime, rem_usecs, true) != 0) {
STATS_INC(ble_phy_stats, tx_late);
ble_phy_disable();
rc = BLE_PHY_ERR_TX_LATE;
} else {
/* Enable PPI to automatically start TXEN */
phy_ppi_timer0_compare0_to_radio_txen_enable();
rc = 0;
}
return rc;
}
/**
* Called to set the start time of a reception
*
* This function acts a bit differently than transmit. If we are late getting
* here we will still attempt to receive.
*
* NOTE: care must be taken when calling this function. The channel should
* already be set.
*
* @param cputime
*
* @return int
*/
int
ble_phy_rx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
{
bool late = false;
int rc = 0;
ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_RX, cputime, rem_usecs);
#if MYNEWT_VAL(BLE_LL_PHY)
ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode);
#endif
/* XXX: This should not be necessary, but paranoia is good! */
/* Clear timer0 compare to TXEN since we are transmitting */
phy_ppi_timer0_compare0_to_radio_txen_disable();
if (ble_phy_set_start_time(cputime, rem_usecs, false) != 0) {
STATS_INC(ble_phy_stats, rx_late);
/* We're late so let's just try to start RX as soon as possible */
ble_phy_set_start_now();
late = true;
}
/* Enable PPI to automatically start RXEN */
phy_ppi_timer0_compare0_to_radio_rxen_enable();
/* Start rx */
rc = ble_phy_rx();
/*
* If we enabled receiver but were late, let's return proper error code so
* caller can handle this.
*/
if (!rc && late) {
rc = BLE_PHY_ERR_RX_LATE;
}
return rc;
}
int
ble_phy_tx(ble_phy_tx_pducb_t pducb, void *pducb_arg, uint8_t end_trans)
{
int rc;
uint8_t *dptr;
uint8_t *pktptr;
uint8_t payload_len;
uint8_t hdr_byte;
uint32_t state;
uint32_t shortcuts;
if (g_ble_phy_data.phy_transition_late) {
ble_phy_disable();
STATS_INC(ble_phy_stats, tx_late);
return BLE_PHY_ERR_TX_LATE;
}
/*
* This check is to make sure that the radio is not in a state where
* it is moving to disabled state. If so, let it get there.
*/
nrf_wait_disabled();
/*
* XXX: Although we may not have to do this here, I clear all the PPI
* that should not be used when transmitting. Some of them are only enabled
* if encryption and/or privacy is on, but I dont care. Better to be
* paranoid, and if you are going to clear one, might as well clear them
* all.
*/
phy_ppi_wfr_disable();
phy_ppi_radio_bcmatch_to_aar_start_disable();
phy_ppi_radio_address_to_ccm_crypt_disable();
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
if (g_ble_phy_data.phy_encrypted) {
dptr = (uint8_t *)&g_ble_phy_enc_buf[0];
pktptr = (uint8_t *)&g_ble_phy_tx_buf[0];
NRF_CCM->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk;
NRF_CCM->INPTR = (uint32_t)dptr;
NRF_CCM->OUTPTR = (uint32_t)pktptr;
NRF_CCM->SCRATCHPTR = (uint32_t)&g_nrf_encrypt_scratchpad[0];
NRF_CCM->EVENTS_ERROR = 0;
NRF_CCM->MODE = CCM_MODE_LENGTH_Msk | ble_phy_get_ccm_datarate();
NRF_CCM->CNFPTR = (uint32_t)&g_nrf_ccm_data;
} else {
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
#endif
dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
pktptr = dptr;
}
#else
dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
pktptr = dptr;
#endif
/* Set PDU payload */
payload_len = pducb(&dptr[3], pducb_arg, &hdr_byte);
/* RAM representation has S0, LENGTH and S1 fields. (3 bytes) */
dptr[0] = hdr_byte;
dptr[1] = payload_len;
dptr[2] = 0;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/* Start key-stream generation and encryption (via short) */
if (g_ble_phy_data.phy_encrypted) {
#if PHY_USE_HEADERMASK_WORKAROUND
if (g_ble_phy_data.phy_headermask != BLE_LL_PDU_HEADERMASK_DATA) {
g_ble_phy_data.phy_headerbyte = dptr[0];
dptr[0] &= g_ble_phy_data.phy_headermask;
g_ble_phy_tx_buf[0] = 0xffffffff;
NRF_CCM->EVENTS_ENDKSGEN = 0;
NRF_CCM->INTENSET = CCM_INTENSET_ENDKSGEN_Msk;
}
#endif
nrf_ccm_task_trigger(NRF_CCM, NRF_CCM_TASK_KSGEN);
}
#endif
NRF_RADIO->PACKETPTR = (uint32_t)pktptr;
/* Clear the ready, end and disabled events */
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->EVENTS_DISABLED = 0;
/* Enable shortcuts for transmit start/end. */
shortcuts = RADIO_SHORTS_END_DISABLE_Msk | RADIO_SHORTS_READY_START_Msk;
NRF_RADIO->SHORTS = shortcuts;
nrf_radio_int_enable(NRF_RADIO, RADIO_INTENSET_DISABLED_Msk);
/* Set the PHY transition */
g_ble_phy_data.phy_transition = end_trans;
/* Set transmitted payload length */
g_ble_phy_data.phy_tx_pyld_len = payload_len;
/* If we already started transmitting, abort it! */
state = NRF_RADIO->STATE;
if (state != RADIO_STATE_STATE_Tx) {
/* Set phy state to transmitting and count packet statistics */
g_ble_phy_data.phy_state = BLE_PHY_STATE_TX;
STATS_INC(ble_phy_stats, tx_good);
STATS_INCN(ble_phy_stats, tx_bytes, payload_len + BLE_LL_PDU_HDR_LEN);
rc = BLE_ERR_SUCCESS;
} else {
ble_phy_disable();
STATS_INC(ble_phy_stats, tx_late);
rc = BLE_PHY_ERR_RADIO_STATE;
}
return rc;
}
/**
* ble phy txpwr set
*
* Set the transmit output power (in dBm).
*
* NOTE: If the output power specified is within the BLE limits but outside
* the chip limits, we "rail" the power level so we dont exceed the min/max
* chip values.
*
* @param dbm Power output in dBm.
*
* @return int 0: success; anything else is an error
*/
int
ble_phy_tx_power_set(int dbm)
{
/* Get actual TX power supported by radio */
dbm = phy_txpower_round(dbm);
phy_txpower_set(dbm);
g_ble_phy_data.phy_txpwr_dbm = dbm;
return 0;
}
/**
* ble phy txpwr round
*
* Get the rounded transmit output power (in dBm).
*
* @param dbm Power output in dBm.
*
* @return int Rounded power in dBm
*/
int
ble_phy_tx_power_round(int dbm)
{
return phy_txpower_round(dbm);
}
/**
* ble phy set access addr
*
* Set access address.
*
* @param access_addr Access address
*
* @return int 0: success; PHY error code otherwise
*/
static int
ble_phy_set_access_addr(uint32_t access_addr)
{
NRF_RADIO->BASE0 = (access_addr << 8);
NRF_RADIO->PREFIX0 = (NRF_RADIO->PREFIX0 & 0xFFFFFF00) | (access_addr >> 24);
g_ble_phy_data.phy_access_address = access_addr;
#if NRF52_ERRATA_102_ENABLE_WORKAROUND || \
NRF52_ERRATA_106_ENABLE_WORKAROUND || \
NRF52_ERRATA_107_ENABLE_WORKAROUND
#ifndef BABBLESIM
if (nrf52_errata_102() || nrf52_errata_106() || nrf52_errata_107()) {
/* [102] RADIO: PAYLOAD/END events delayed or not triggered after ADDRESS
* [106] RADIO: Higher CRC error rates for some access addresses
* [107] RADIO: Immediate address match for access addresses containing MSBs 0x00
*/
*(volatile uint32_t *)0x40001774 =
((*(volatile uint32_t *)0x40001774) & 0xfffffffe) | 0x01000000;
}
#endif
#endif
return 0;
}
/**
* ble phy txpwr get
*
* Get the transmit power.
*
* @return int The current PHY transmit power, in dBm
*/
int
ble_phy_tx_power_get(void)
{
return g_ble_phy_data.phy_txpwr_dbm;
}
/**
* ble phy setchan
*
* Sets the logical frequency of the transceiver. The input parameter is the
* BLE channel index (0 to 39, inclusive). The NRF frequency register works like
* this: logical frequency = 2400 + FREQ (MHz).
*
* Thus, to get a logical frequency of 2402 MHz, you would program the
* FREQUENCY register to 2.
*
* @param chan This is the Data Channel Index or Advertising Channel index
*
* @return int 0: success; PHY error code otherwise
*/
int
ble_phy_setchan(uint8_t chan, uint32_t access_addr, uint32_t crcinit)
{
assert(chan < BLE_PHY_NUM_CHANS);
/* Check for valid channel range */
if (chan >= BLE_PHY_NUM_CHANS) {
return BLE_PHY_ERR_INV_PARAM;
}
/* Set current access address */
ble_phy_set_access_addr(access_addr);
/* Configure crcinit */
NRF_RADIO->CRCINIT = crcinit;
/* Set the frequency and the data whitening initial value */
g_ble_phy_data.phy_chan = chan;
NRF_RADIO->FREQUENCY = g_ble_phy_chan_freq[chan];
NRF_RADIO->DATAWHITEIV = chan;
return 0;
}
uint8_t
ble_phy_chan_get(void)
{
return g_ble_phy_data.phy_chan;
}
/**
* Stop the timer used to count microseconds when using RTC for cputime
*/
static void
ble_phy_stop_usec_timer(void)
{
nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_STOP);
NRF_TIMER0->TASKS_SHUTDOWN = 1;
nrf_rtc_event_disable(NRF_RTC0, RTC_EVTENSET_COMPARE0_Msk);
}
/**
* ble phy disable irq and ppi
*
* This routine is to be called when reception was stopped due to either a
* wait for response timeout or a packet being received and the phy is to be
* restarted in receive mode. Generally, the disable routine is called to stop
* the phy.
*/
static void
ble_phy_disable_irq_and_ppi(void)
{
nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
NRF_RADIO->SHORTS = 0;
nrf_radio_task_trigger(NRF_RADIO, NRF_RADIO_TASK_DISABLE);
phy_ppi_disable();
NVIC_ClearPendingIRQ(RADIO_IRQn);
g_ble_phy_data.phy_state = BLE_PHY_STATE_IDLE;
}
void
ble_phy_restart_rx(void)
{
ble_phy_stop_usec_timer();
ble_phy_disable_irq_and_ppi();
ble_phy_set_start_now();
/* Enable PPI to automatically start RXEN */
phy_ppi_timer0_compare0_to_radio_rxen_enable();
ble_phy_rx();
}
/**
* ble phy disable
*
* Disables the PHY. This should be called when an event is over. It stops
* the usec timer (if used), disables interrupts, disables the RADIO, disables
* PPI and sets state to idle.
*/
void
ble_phy_disable(void)
{
ble_phy_trace_void(BLE_PHY_TRACE_ID_DISABLE);
#if PHY_USE_HEADERMASK_WORKAROUND
NRF_CCM->INTENCLR = CCM_INTENCLR_ENDKSGEN_Msk;
#endif
ble_phy_stop_usec_timer();
ble_phy_disable_irq_and_ppi();
g_ble_phy_data.phy_transition_late = 0;
#if PHY_USE_FEM
phy_fem_disable();
#endif
}
/* Gets the current access address */
uint32_t ble_phy_access_addr_get(void)
{
return g_ble_phy_data.phy_access_address;
}
/**
* Return the phy state
*
* @return int The current PHY state.
*/
int
ble_phy_state_get(void)
{
return g_ble_phy_data.phy_state;
}
/**
* Called to see if a reception has started
*
* @return int
*/
int
ble_phy_rx_started(void)
{
return g_ble_phy_data.phy_rx_started;
}
/**
* Return the transceiver state
*
* @return int transceiver state.
*/
uint8_t
ble_phy_xcvr_state_get(void)
{
uint32_t state;
state = NRF_RADIO->STATE;
return (uint8_t)state;
}
/**
* Called to return the maximum data pdu payload length supported by the
* phy. For this chip, if encryption is enabled, the maximum payload is 27
* bytes.
*
* @return uint8_t Maximum data channel PDU payload size supported
*/
uint8_t
ble_phy_max_data_pdu_pyld(void)
{
return BLE_LL_DATA_PDU_MAX_PYLD;
}
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
void
ble_phy_resolv_list_enable(void)
{
NRF_AAR->NIRK = (uint32_t)g_nrf_num_irks;
g_ble_phy_data.phy_privacy = 1;
}
void
ble_phy_resolv_list_disable(void)
{
g_ble_phy_data.phy_privacy = 0;
}
#endif
#if MYNEWT_VAL(BLE_LL_DTM)
void ble_phy_enable_dtm(void)
{
/* When DTM is enabled we need to disable whitening as per
* Bluetooth v5.0 Vol 6. Part F. 4.1.1
*/
NRF_RADIO->PCNF1 &= ~RADIO_PCNF1_WHITEEN_Msk;
}
void ble_phy_disable_dtm(void)
{
/* Enable whitening */
NRF_RADIO->PCNF1 |= RADIO_PCNF1_WHITEEN_Msk;
}
#if MYNEWT_VAL(BLE_LL_DTM_EXTENSIONS)
int
ble_phy_dtm_carrier(uint8_t rf_channel)
{
/* based on Nordic DTM sample */
ble_phy_disable();
ble_phy_enable_dtm();
ble_phy_mode_apply(BLE_PHY_MODE_1M);
nrf_radio_shorts_enable(NRF_RADIO, NRF_RADIO_SHORT_READY_START_MASK);
NRF_RADIO->FREQUENCY = g_ble_phy_chan_freq[rf_channel];
nrf_radio_task_trigger(NRF_RADIO, NRF_RADIO_TASK_TXEN);
return 0;
}
#endif
#endif
void
ble_phy_rfclk_enable(void)
{
#if MYNEWT || defined(RIOT_VERSION)
#ifdef NRF52_SERIES
nrf52_clock_hfxo_request();
#endif
#ifdef NRF53_SERIES
nrf5340_net_clock_hfxo_request();
#endif
#else
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTART);
#endif
}
void
ble_phy_rfclk_disable(void)
{
#if MYNEWT || defined(RIOT_VERSION)
#ifdef NRF52_SERIES
nrf52_clock_hfxo_release();
#endif
#ifdef NRF53_SERIES
nrf5340_net_clock_hfxo_release();
#endif
#else
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTOP);
#endif
}
void
ble_phy_tifs_txtx_set(uint16_t usecs, uint8_t anchor)
{
g_ble_phy_data.txtx_time_us = usecs;
g_ble_phy_data.txtx_time_anchor = anchor;
}