blob: 12478ba3f4f9aaedd766f958887f79d3236fd1e5 [file] [log] [blame]
/*
Copyright (c) 2009-2018 ARM Limited. All rights reserved.
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the License); you may
not use this file except in compliance with the License.
You may obtain a copy of the License at
www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an AS IS BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
NOTICE: This file has been modified by Nordic Semiconductor ASA.
*/
/* NOTE: Template files (including this one) are application specific and therefore expected to
be copied into the application project folder prior to its use! */
#include <stdint.h>
#include <stdbool.h>
#include "nrf.h"
#include "system_nrf52840.h"
/*lint ++flb "Enter library region" */
#define __SYSTEM_CLOCK_64M (64000000UL)
static bool errata_36(void);
static bool errata_66(void);
static bool errata_98(void);
static bool errata_103(void);
static bool errata_115(void);
static bool errata_120(void);
static bool errata_136(void);
#if defined ( __CC_ARM )
uint32_t SystemCoreClock __attribute__((used)) = __SYSTEM_CLOCK_64M;
#elif defined ( __ICCARM__ )
__root uint32_t SystemCoreClock = __SYSTEM_CLOCK_64M;
#elif defined ( __GNUC__ )
uint32_t SystemCoreClock __attribute__((used)) = __SYSTEM_CLOCK_64M;
#endif
void SystemCoreClockUpdate(void)
{
SystemCoreClock = __SYSTEM_CLOCK_64M;
}
void SystemInit(void)
{
/* Enable SWO trace functionality. If ENABLE_SWO is not defined, SWO pin will be used as GPIO (see Product
Specification to see which one). */
#if defined (ENABLE_SWO)
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
NRF_CLOCK->TRACECONFIG |= CLOCK_TRACECONFIG_TRACEMUX_Serial << CLOCK_TRACECONFIG_TRACEMUX_Pos;
NRF_P1->PIN_CNF[0] = (GPIO_PIN_CNF_DRIVE_H0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
#endif
/* Enable Trace functionality. If ENABLE_TRACE is not defined, TRACE pins will be used as GPIOs (see Product
Specification to see which ones). */
#if defined (ENABLE_TRACE)
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
NRF_CLOCK->TRACECONFIG |= CLOCK_TRACECONFIG_TRACEMUX_Parallel << CLOCK_TRACECONFIG_TRACEMUX_Pos;
NRF_P0->PIN_CNF[7] = (GPIO_PIN_CNF_DRIVE_H0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
NRF_P1->PIN_CNF[0] = (GPIO_PIN_CNF_DRIVE_H0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
NRF_P0->PIN_CNF[12] = (GPIO_PIN_CNF_DRIVE_H0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
NRF_P0->PIN_CNF[11] = (GPIO_PIN_CNF_DRIVE_H0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
NRF_P1->PIN_CNF[9] = (GPIO_PIN_CNF_DRIVE_H0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
#endif
/* Workaround for Errata 36 "CLOCK: Some registers are not reset when expected" found at the Errata document
for your device located at https://infocenter.nordicsemi.com/ */
if (errata_36()){
NRF_CLOCK->EVENTS_DONE = 0;
NRF_CLOCK->EVENTS_CTTO = 0;
NRF_CLOCK->CTIV = 0;
}
/* Workaround for Errata 66 "TEMP: Linearity specification not met with default settings" found at the Errata document
for your device located at https://infocenter.nordicsemi.com/ */
if (errata_66()){
NRF_TEMP->A0 = NRF_FICR->TEMP.A0;
NRF_TEMP->A1 = NRF_FICR->TEMP.A1;
NRF_TEMP->A2 = NRF_FICR->TEMP.A2;
NRF_TEMP->A3 = NRF_FICR->TEMP.A3;
NRF_TEMP->A4 = NRF_FICR->TEMP.A4;
NRF_TEMP->A5 = NRF_FICR->TEMP.A5;
NRF_TEMP->B0 = NRF_FICR->TEMP.B0;
NRF_TEMP->B1 = NRF_FICR->TEMP.B1;
NRF_TEMP->B2 = NRF_FICR->TEMP.B2;
NRF_TEMP->B3 = NRF_FICR->TEMP.B3;
NRF_TEMP->B4 = NRF_FICR->TEMP.B4;
NRF_TEMP->B5 = NRF_FICR->TEMP.B5;
NRF_TEMP->T0 = NRF_FICR->TEMP.T0;
NRF_TEMP->T1 = NRF_FICR->TEMP.T1;
NRF_TEMP->T2 = NRF_FICR->TEMP.T2;
NRF_TEMP->T3 = NRF_FICR->TEMP.T3;
NRF_TEMP->T4 = NRF_FICR->TEMP.T4;
}
/* Workaround for Errata 98 "NFCT: Not able to communicate with the peer" found at the Errata document
for your device located at https://infocenter.nordicsemi.com/ */
if (errata_98()){
*(volatile uint32_t *)0x4000568Cul = 0x00038148ul;
}
/* Workaround for Errata 103 "CCM: Wrong reset value of CCM MAXPACKETSIZE" found at the Errata document
for your device located at https://infocenter.nordicsemi.com/ */
if (errata_103()){
NRF_CCM->MAXPACKETSIZE = 0xFBul;
}
/* Workaround for Errata 115 "RAM: RAM content cannot be trusted upon waking up from System ON Idle or System OFF mode" found at the Errata document
for your device located at https://infocenter.nordicsemi.com/ */
if (errata_115()){
*(volatile uint32_t *)0x40000EE4 = (*(volatile uint32_t *)0x40000EE4 & 0xFFFFFFF0) | (*(uint32_t *)0x10000258 & 0x0000000F);
}
/* Workaround for Errata 120 "QSPI: Data read or written is corrupted" found at the Errata document
for your device located at https://infocenter.nordicsemi.com/ */
if (errata_120()){
*(volatile uint32_t *)0x40029640ul = 0x200ul;
}
/* Workaround for Errata 136 "System: Bits in RESETREAS are set when they should not be" found at the Errata document
for your device located at https://infocenter.nordicsemi.com/ */
if (errata_136()){
if (NRF_POWER->RESETREAS & POWER_RESETREAS_RESETPIN_Msk){
NRF_POWER->RESETREAS = ~POWER_RESETREAS_RESETPIN_Msk;
}
}
/* Enable the FPU if the compiler used floating point unit instructions. __FPU_USED is a MACRO defined by the
* compiler. Since the FPU consumes energy, remember to disable FPU use in the compiler if floating point unit
* operations are not used in your code. */
#if (__FPU_USED == 1)
SCB->CPACR |= (3UL << 20) | (3UL << 22);
__DSB();
__ISB();
#endif
/* Configure NFCT pins as GPIOs if NFCT is not to be used in your code. If CONFIG_NFCT_PINS_AS_GPIOS is not defined,
two GPIOs (see Product Specification to see which ones) will be reserved for NFC and will not be available as
normal GPIOs. */
#if defined (CONFIG_NFCT_PINS_AS_GPIOS)
if ((NRF_UICR->NFCPINS & UICR_NFCPINS_PROTECT_Msk) == (UICR_NFCPINS_PROTECT_NFC << UICR_NFCPINS_PROTECT_Pos)){
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Wen << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NRF_UICR->NFCPINS &= ~UICR_NFCPINS_PROTECT_Msk;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Ren << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NVIC_SystemReset();
}
#endif
/* Configure GPIO pads as pPin Reset pin if Pin Reset capabilities desired. If CONFIG_GPIO_AS_PINRESET is not
defined, pin reset will not be available. One GPIO (see Product Specification to see which one) will then be
reserved for PinReset and not available as normal GPIO. */
#if defined (CONFIG_GPIO_AS_PINRESET)
if (((NRF_UICR->PSELRESET[0] & UICR_PSELRESET_CONNECT_Msk) != (UICR_PSELRESET_CONNECT_Connected << UICR_PSELRESET_CONNECT_Pos)) ||
((NRF_UICR->PSELRESET[1] & UICR_PSELRESET_CONNECT_Msk) != (UICR_PSELRESET_CONNECT_Connected << UICR_PSELRESET_CONNECT_Pos))){
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Wen << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NRF_UICR->PSELRESET[0] = 18;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NRF_UICR->PSELRESET[1] = 18;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Ren << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NVIC_SystemReset();
}
#endif
SystemCoreClockUpdate();
}
static bool errata_36(void)
{
if (*(uint32_t *)0x10000130ul == 0x8ul){
if (*(uint32_t *)0x10000134ul == 0x0ul){
return true;
}
if (*(uint32_t *)0x10000134ul == 0x1ul){
return true;
}
if (*(uint32_t *)0x10000134ul == 0x2ul){
return true;
}
}
return true;
}
static bool errata_66(void)
{
if (*(uint32_t *)0x10000130ul == 0x8ul){
if (*(uint32_t *)0x10000134ul == 0x0ul){
return true;
}
if (*(uint32_t *)0x10000134ul == 0x1ul){
return true;
}
if (*(uint32_t *)0x10000134ul == 0x2ul){
return true;
}
}
return true;
}
static bool errata_98(void)
{
if (*(uint32_t *)0x10000130ul == 0x8ul){
if (*(uint32_t *)0x10000134ul == 0x0ul){
return true;
}
}
return false;
}
static bool errata_103(void)
{
if (*(uint32_t *)0x10000130ul == 0x8ul){
if (*(uint32_t *)0x10000134ul == 0x0ul){
return true;
}
}
return false;
}
static bool errata_115(void)
{
if (*(uint32_t *)0x10000130ul == 0x8ul){
if (*(uint32_t *)0x10000134ul == 0x0ul){
return true;
}
}
return false;
}
static bool errata_120(void)
{
if (*(uint32_t *)0x10000130ul == 0x8ul){
if (*(uint32_t *)0x10000134ul == 0x0ul){
return true;
}
}
return false;
}
static bool errata_136(void)
{
if (*(uint32_t *)0x10000130ul == 0x8ul){
if (*(uint32_t *)0x10000134ul == 0x0ul){
return true;
}
if (*(uint32_t *)0x10000134ul == 0x1ul){
return true;
}
if (*(uint32_t *)0x10000134ul == 0x2ul){
return true;
}
}
return true;
}
/*lint --flb "Leave library region" */