blob: 64b349ad380926bb5ba50a4ddf77e07c46368216 [file] [log] [blame]
/*
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
Description: Generic SX1272 driver implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis and Gregory Cristian
*/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "os/mynewt.h"
#include "hal/hal_gpio.h"
#include "hal/hal_spi.h"
#include "hal/hal_timer.h"
#include "bsp/bsp.h"
#include "radio/radio.h"
#include "sx1272.h"
#include "sx1272-board.h"
#include "lora/utilities.h"
#if MYNEWT_VAL(LORA_MAC_TIMER_NUM) == -1
#error "Must define a Lora MAC timer number"
#else
#define SX1272_TIMER_NUM MYNEWT_VAL(LORA_MAC_TIMER_NUM)
#endif
/* XXX: dummy for now to read sx1272 */
#if MYNEWT_VAL(BSP_USE_HAL_SPI)
void bsp_spi_read_buf(uint8_t addr, uint8_t *buf, uint8_t size);
void bsp_spi_write_buf(uint8_t addr, uint8_t *buf, uint8_t size);
#endif
/*
* Local types definition
*/
/*!
* Radio registers definition
*/
typedef struct
{
RadioModems_t Modem;
uint8_t Addr;
uint8_t Value;
} RadioRegisters_t;
/*!
* FSK bandwidth definition
*/
typedef struct
{
uint32_t bandwidth;
uint8_t RegValue;
} FskBandwidth_t;
/*
* Private functions prototypes
*/
/*!
* \brief Resets the SX1272
*/
void SX1272Reset(void);
/*!
* \brief Sets the SX1272 in transmission mode for the given time
* \param [IN] timeout Transmission timeout [ms] [0: continuous, others timeout]
*/
void SX1272SetTx(uint32_t timeout);
/*!
* \brief Writes the buffer contents to the SX1272 FIFO
*
* \param [IN] buffer Buffer containing data to be put on the FIFO.
* \param [IN] size Number of bytes to be written to the FIFO
*/
void SX1272WriteFifo(uint8_t *buffer, uint8_t size);
/*!
* \brief Reads the contents of the SX1272 FIFO
*
* \param [OUT] buffer Buffer where to copy the FIFO read data.
* \param [IN] size Number of bytes to be read from the FIFO
*/
void SX1272ReadFifo(uint8_t *buffer, uint8_t size);
/*!
* \brief Sets the SX1272 operating mode
*
* \param [IN] opMode New operating mode
*/
void SX1272SetOpMode(uint8_t opMode);
/*
* SX1272 DIO IRQ callback functions prototype
*/
/*!
* \brief DIO 0 IRQ callback
*/
void SX1272OnDio0Irq(void *unused);
/*!
* \brief DIO 1 IRQ callback
*/
void SX1272OnDio1Irq(void *unused);
/*!
* \brief DIO 2 IRQ callback
*/
void SX1272OnDio2Irq(void *unused);
/*!
* \brief DIO 3 IRQ callback
*/
void SX1272OnDio3Irq(void *unused);
/*!
* \brief DIO 4 IRQ callback
*/
void SX1272OnDio4Irq(void *unused);
/*!
* \brief DIO 5 IRQ callback
*/
void SX1272OnDio5Irq(void *unused);
/*!
* \brief Tx & Rx timeout timer callback
*/
void SX1272OnTimeoutIrq(void *unused);
/*
* Private global constants
*/
/*!
* Radio hardware registers initialization
*
* \remark RADIO_INIT_REGISTERS_VALUE is defined in sx1272-board.h file
*/
const RadioRegisters_t RadioRegsInit[] = RADIO_INIT_REGISTERS_VALUE;
/*!
* Constant values need to compute the RSSI value
*/
#define RSSI_OFFSET -139
/*!
* Precomputed FSK bandwidth registers values
*/
const FskBandwidth_t FskBandwidths[] =
{
{2600 , 0x17},
{3100 , 0x0F},
{3900 , 0x07},
{5200 , 0x16},
{6300 , 0x0E},
{7800 , 0x06},
{10400 , 0x15},
{12500 , 0x0D},
{15600 , 0x05},
{20800 , 0x14},
{25000 , 0x0C},
{31300 , 0x04},
{41700 , 0x13},
{50000 , 0x0B},
{62500 , 0x03},
{83333 , 0x12},
{100000, 0x0A},
{125000, 0x02},
{166700, 0x11},
{200000, 0x09},
{250000, 0x01},
{300000, 0x00}, // Invalid Bandwidth
};
/*
* Private global variables
*/
/*!
* Radio callbacks variable
*/
static RadioEvents_t *RadioEvents;
/*!
* Reception buffer
*/
static uint8_t g_rxtx_buffer[RX_BUFFER_SIZE];
/*
* Public global variables
*/
/*!
* Radio hardware and global parameters
*/
SX1272_t SX1272;
/*!
* Hardware DIO IRQ callback initialization
*/
DioIrqHandler *DioIrq[] = {
SX1272OnDio0Irq,
SX1272OnDio1Irq,
SX1272OnDio2Irq,
SX1272OnDio3Irq,
#if (SX1272_DIO4 >= 0)
SX1272OnDio4Irq,
#else
NULL,
#endif
NULL
};
/*!
* Tx and Rx timers
*/
struct hal_timer TxTimeoutTimer;
struct hal_timer RxTimeoutTimer;
struct hal_timer RxTimeoutSyncWord;
double
ceil(double d)
{
int64_t i;
i = d;
if (d == i) {
return i;
}
return i + 1;
}
double
floor(double d)
{
return (int64_t)d;
}
double
round(double d)
{
return (int64_t)(d + 0.5);
}
/*
* Radio driver functions implementation
*/
void
SX1272Init(RadioEvents_t *events)
{
uint8_t i;
RadioEvents = events;
// Initialize driver timeout timers
hal_timer_set_cb(SX1272_TIMER_NUM, &TxTimeoutTimer, SX1272OnTimeoutIrq, NULL);
hal_timer_set_cb(SX1272_TIMER_NUM, &RxTimeoutTimer, SX1272OnTimeoutIrq, NULL);
hal_timer_set_cb(SX1272_TIMER_NUM, &RxTimeoutSyncWord, SX1272OnTimeoutIrq, NULL);
SX1272IoInit();
SX1272IoIrqInit(DioIrq);
SX1272Reset();
SX1272SetOpMode(RF_OPMODE_SLEEP);
for (i = 0; i < sizeof(RadioRegsInit) / sizeof(RadioRegisters_t); i++) {
SX1272SetModem(RadioRegsInit[i].Modem);
SX1272Write(RadioRegsInit[i].Addr, RadioRegsInit[i].Value);
}
SX1272SetModem(MODEM_FSK);
SX1272.Settings.State = RF_IDLE;
}
RadioState_t
SX1272GetStatus(void)
{
return SX1272.Settings.State;
}
void
SX1272SetChannel(uint32_t freq)
{
SX1272.Settings.Channel = freq;
freq = (uint32_t)((double)freq / (double)FREQ_STEP);
SX1272Write(REG_FRFMSB, (uint8_t)((freq >> 16) & 0xFF));
SX1272Write(REG_FRFMID, (uint8_t)((freq >> 8) & 0xFF));
SX1272Write(REG_FRFLSB, (uint8_t)(freq & 0xFF));
}
bool
SX1272IsChannelFree(RadioModems_t modem, uint32_t freq, int16_t rssiThresh,
uint32_t maxCarrierSenseTime)
{
bool status = true;
int16_t rssi;
uint32_t carrierSenseTime;
SX1272SetModem(modem);
SX1272SetChannel(freq);
SX1272SetOpMode(RF_OPMODE_RECEIVER);
/* Delay for 1 msec */
hal_timer_delay(SX1272_TIMER_NUM, 1000);
carrierSenseTime = timer_get_current_time( );
// Perform carrier sense for maxCarrierSenseTime
while (timer_get_elapsed_time( carrierSenseTime ) < maxCarrierSenseTime) {
rssi = SX1272ReadRssi(modem);
if (rssi > rssiThresh) {
status = false;
break;
}
}
SX1272SetSleep();
return status;
}
uint32_t
SX1272Random(void)
{
uint8_t i;
uint32_t rnd = 0;
/*
* Radio setup for random number generation
*/
// Set LoRa modem ON
SX1272SetModem(MODEM_LORA);
// Disable LoRa modem interrupts
SX1272Write(REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED);
// Set radio in continuous reception
SX1272SetOpMode(RF_OPMODE_RECEIVER);
for (i = 0; i < 32; i++) {
hal_timer_delay(SX1272_TIMER_NUM, 1000);
// Unfiltered RSSI value reading. Only takes the LSB value
rnd |= ((uint32_t)SX1272Read(REG_LR_RSSIWIDEBAND) & 0x01) << i;
}
SX1272SetSleep();
return rnd;
}
/*!
* Returns the known FSK bandwidth registers value
*
* \param [IN] bandwidth Bandwidth value in Hz
* \retval regValue Bandwidth register value.
*/
static uint8_t
GetFskBandwidthRegValue(uint32_t bandwidth)
{
uint8_t i;
for (i = 0; i < (sizeof(FskBandwidths) / sizeof(FskBandwidth_t)) - 1; i++) {
if ((bandwidth >= FskBandwidths[i].bandwidth) && (bandwidth < FskBandwidths[i + 1].bandwidth)) {
return FskBandwidths[i].RegValue;
}
}
// ERROR: Value not found
while(1);
}
void
SX1272SetRxConfig(RadioModems_t modem, uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint32_t bandwidthAfc, uint16_t preambleLen,
uint16_t symbTimeout, bool fixLen, uint8_t payloadLen,
bool crcOn, bool freqHopOn, uint8_t hopPeriod,
bool iqInverted, bool rxcontinuous)
{
SX1272SetModem(modem);
switch (modem) {
case MODEM_FSK:
SX1272.Settings.Fsk.Bandwidth = bandwidth;
SX1272.Settings.Fsk.Datarate = datarate;
SX1272.Settings.Fsk.BandwidthAfc = bandwidthAfc;
SX1272.Settings.Fsk.FixLen = fixLen;
SX1272.Settings.Fsk.PayloadLen = payloadLen;
SX1272.Settings.Fsk.CrcOn = crcOn;
SX1272.Settings.Fsk.IqInverted = iqInverted;
SX1272.Settings.Fsk.RxContinuous = rxcontinuous;
SX1272.Settings.Fsk.PreambleLen = preambleLen;
SX1272.Settings.Fsk.RxSingleTimeout = (uint32_t)(symbTimeout * ((1.0 / (double)datarate) * 8.0) * 1000);
datarate = (uint16_t)((double)XTAL_FREQ / (double)datarate);
SX1272Write(REG_BITRATEMSB, (uint8_t)(datarate >> 8));
SX1272Write(REG_BITRATELSB, (uint8_t)(datarate & 0xFF));
SX1272Write(REG_RXBW, GetFskBandwidthRegValue(bandwidth));
SX1272Write(REG_AFCBW, GetFskBandwidthRegValue(bandwidthAfc));
SX1272Write(REG_PREAMBLEMSB, (uint8_t)((preambleLen >> 8) & 0xFF));
SX1272Write(REG_PREAMBLELSB, (uint8_t)(preambleLen & 0xFF));
if (fixLen == 1) {
SX1272Write(REG_PAYLOADLENGTH, payloadLen);
} else {
// Set payload length to the maximum
SX1272Write(REG_PAYLOADLENGTH, 0xFF);
}
SX1272Write(REG_PACKETCONFIG1,
(SX1272Read(REG_PACKETCONFIG1) &
RF_PACKETCONFIG1_CRC_MASK &
RF_PACKETCONFIG1_PACKETFORMAT_MASK) |
((fixLen == 1) ? RF_PACKETCONFIG1_PACKETFORMAT_FIXED : RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE) |
(crcOn << 4));
SX1272Write(REG_PACKETCONFIG2, (SX1272Read(REG_PACKETCONFIG2) | RF_PACKETCONFIG2_DATAMODE_PACKET));
break;
case MODEM_LORA:
SX1272.Settings.LoRa.Bandwidth = bandwidth;
SX1272.Settings.LoRa.Datarate = datarate;
SX1272.Settings.LoRa.Coderate = coderate;
SX1272.Settings.LoRa.PreambleLen = preambleLen;
SX1272.Settings.LoRa.FixLen = fixLen;
SX1272.Settings.LoRa.PayloadLen = payloadLen;
SX1272.Settings.LoRa.CrcOn = crcOn;
SX1272.Settings.LoRa.FreqHopOn = freqHopOn;
SX1272.Settings.LoRa.HopPeriod = hopPeriod;
SX1272.Settings.LoRa.IqInverted = iqInverted;
SX1272.Settings.LoRa.RxContinuous = rxcontinuous;
if (datarate > 12) {
datarate = 12;
} else if (datarate < 6) {
datarate = 6;
}
if (((bandwidth == 0) && ((datarate == 11) || (datarate == 12))) ||
((bandwidth == 1) && (datarate == 12))) {
SX1272.Settings.LoRa.LowDatarateOptimize = 0x01;
} else {
SX1272.Settings.LoRa.LowDatarateOptimize = 0x00;
}
SX1272Write(REG_LR_MODEMCONFIG1,
(SX1272Read(REG_LR_MODEMCONFIG1) &
RFLR_MODEMCONFIG1_BW_MASK &
RFLR_MODEMCONFIG1_CODINGRATE_MASK &
RFLR_MODEMCONFIG1_IMPLICITHEADER_MASK &
RFLR_MODEMCONFIG1_RXPAYLOADCRC_MASK &
RFLR_MODEMCONFIG1_LOWDATARATEOPTIMIZE_MASK) |
(bandwidth << 6) | (coderate << 3) |
(fixLen << 2) | (crcOn << 1) |
SX1272.Settings.LoRa.LowDatarateOptimize);
SX1272Write(REG_LR_MODEMCONFIG2,
(SX1272Read(REG_LR_MODEMCONFIG2) &
RFLR_MODEMCONFIG2_SF_MASK &
RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB_MASK) |
(datarate << 4) |
((symbTimeout >> 8) & ~RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB_MASK));
SX1272Write(REG_LR_SYMBTIMEOUTLSB, (uint8_t)(symbTimeout & 0xFF));
SX1272Write(REG_LR_PREAMBLEMSB, (uint8_t)((preambleLen >> 8) & 0xFF));
SX1272Write(REG_LR_PREAMBLELSB, (uint8_t)(preambleLen & 0xFF));
if (fixLen == 1) {
SX1272Write(REG_LR_PAYLOADLENGTH, payloadLen);
}
if (SX1272.Settings.LoRa.FreqHopOn == true) {
SX1272Write(REG_LR_PLLHOP, (SX1272Read(REG_LR_PLLHOP) & RFLR_PLLHOP_FASTHOP_MASK) | RFLR_PLLHOP_FASTHOP_ON);
SX1272Write(REG_LR_HOPPERIOD, SX1272.Settings.LoRa.HopPeriod);
}
if (datarate == 6) {
SX1272Write(REG_LR_DETECTOPTIMIZE,
(SX1272Read(REG_LR_DETECTOPTIMIZE) &
RFLR_DETECTIONOPTIMIZE_MASK) |
RFLR_DETECTIONOPTIMIZE_SF6);
SX1272Write(REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF6);
} else {
SX1272Write(REG_LR_DETECTOPTIMIZE,
(SX1272Read(REG_LR_DETECTOPTIMIZE) &
RFLR_DETECTIONOPTIMIZE_MASK) |
RFLR_DETECTIONOPTIMIZE_SF7_TO_SF12);
SX1272Write(REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF7_TO_SF12);
}
break;
}
}
void
SX1272SetTxConfig(RadioModems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, bool crcOn, bool freqHopOn,
uint8_t hopPeriod, bool iqInverted, uint32_t timeout)
{
SX1272SetModem(modem);
SX1272SetRfTxPower(power);
switch (modem) {
case MODEM_FSK:
SX1272.Settings.Fsk.Power = power;
SX1272.Settings.Fsk.Fdev = fdev;
SX1272.Settings.Fsk.Bandwidth = bandwidth;
SX1272.Settings.Fsk.Datarate = datarate;
SX1272.Settings.Fsk.PreambleLen = preambleLen;
SX1272.Settings.Fsk.FixLen = fixLen;
SX1272.Settings.Fsk.CrcOn = crcOn;
SX1272.Settings.Fsk.IqInverted = iqInverted;
SX1272.Settings.Fsk.TxTimeout = timeout;
fdev = (uint16_t)((double)fdev / (double)FREQ_STEP);
SX1272Write(REG_FDEVMSB, (uint8_t)(fdev >> 8));
SX1272Write(REG_FDEVLSB, (uint8_t)(fdev & 0xFF));
datarate = (uint16_t)((double)XTAL_FREQ / (double)datarate);
SX1272Write(REG_BITRATEMSB, (uint8_t)(datarate >> 8));
SX1272Write(REG_BITRATELSB, (uint8_t)(datarate & 0xFF));
SX1272Write(REG_PREAMBLEMSB, (preambleLen >> 8) & 0x00FF);
SX1272Write(REG_PREAMBLELSB, preambleLen & 0xFF);
SX1272Write(REG_PACKETCONFIG1,
(SX1272Read(REG_PACKETCONFIG1) &
RF_PACKETCONFIG1_CRC_MASK &
RF_PACKETCONFIG1_PACKETFORMAT_MASK) |
((fixLen == 1) ? RF_PACKETCONFIG1_PACKETFORMAT_FIXED : RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE) |
(crcOn << 4));
SX1272Write(REG_PACKETCONFIG2, (SX1272Read(REG_PACKETCONFIG2) | RF_PACKETCONFIG2_DATAMODE_PACKET));
break;
case MODEM_LORA:
SX1272.Settings.LoRa.Power = power;
SX1272.Settings.LoRa.Bandwidth = bandwidth;
SX1272.Settings.LoRa.Datarate = datarate;
SX1272.Settings.LoRa.Coderate = coderate;
SX1272.Settings.LoRa.PreambleLen = preambleLen;
SX1272.Settings.LoRa.FixLen = fixLen;
SX1272.Settings.LoRa.FreqHopOn = freqHopOn;
SX1272.Settings.LoRa.HopPeriod = hopPeriod;
SX1272.Settings.LoRa.CrcOn = crcOn;
SX1272.Settings.LoRa.IqInverted = iqInverted;
SX1272.Settings.LoRa.TxTimeout = timeout;
if (datarate > 12) {
datarate = 12;
} else if (datarate < 6) {
datarate = 6;
}
if (((bandwidth == 0) && ((datarate == 11) || (datarate == 12))) ||
((bandwidth == 1) && (datarate == 12))) {
SX1272.Settings.LoRa.LowDatarateOptimize = 0x01;
} else {
SX1272.Settings.LoRa.LowDatarateOptimize = 0x00;
}
if (SX1272.Settings.LoRa.FreqHopOn == true) {
SX1272Write(REG_LR_PLLHOP, (SX1272Read(REG_LR_PLLHOP) & RFLR_PLLHOP_FASTHOP_MASK) | RFLR_PLLHOP_FASTHOP_ON);
SX1272Write(REG_LR_HOPPERIOD, SX1272.Settings.LoRa.HopPeriod);
}
SX1272Write(REG_LR_MODEMCONFIG1,
(SX1272Read(REG_LR_MODEMCONFIG1) &
RFLR_MODEMCONFIG1_BW_MASK &
RFLR_MODEMCONFIG1_CODINGRATE_MASK &
RFLR_MODEMCONFIG1_IMPLICITHEADER_MASK &
RFLR_MODEMCONFIG1_RXPAYLOADCRC_MASK &
RFLR_MODEMCONFIG1_LOWDATARATEOPTIMIZE_MASK) |
(bandwidth << 6) | (coderate << 3) |
(fixLen << 2) | (crcOn << 1) |
SX1272.Settings.LoRa.LowDatarateOptimize);
SX1272Write(REG_LR_MODEMCONFIG2,
(SX1272Read(REG_LR_MODEMCONFIG2) &
RFLR_MODEMCONFIG2_SF_MASK) |
(datarate << 4));
SX1272Write(REG_LR_PREAMBLEMSB, (preambleLen >> 8) & 0x00FF);
SX1272Write(REG_LR_PREAMBLELSB, preambleLen & 0xFF);
if (datarate == 6) {
SX1272Write(REG_LR_DETECTOPTIMIZE,
(SX1272Read(REG_LR_DETECTOPTIMIZE) &
RFLR_DETECTIONOPTIMIZE_MASK) |
RFLR_DETECTIONOPTIMIZE_SF6);
SX1272Write(REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF6);
} else {
SX1272Write(REG_LR_DETECTOPTIMIZE,
(SX1272Read(REG_LR_DETECTOPTIMIZE) &
RFLR_DETECTIONOPTIMIZE_MASK) |
RFLR_DETECTIONOPTIMIZE_SF7_TO_SF12);
SX1272Write(REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF7_TO_SF12);
}
break;
}
}
uint32_t
SX1272GetTimeOnAir(RadioModems_t modem, uint8_t pktLen)
{
uint32_t airtime;
double bw;
switch (modem) {
case MODEM_FSK:
airtime = round((8 * (SX1272.Settings.Fsk.PreambleLen +
((SX1272Read(REG_SYNCCONFIG) & ~RF_SYNCCONFIG_SYNCSIZE_MASK) + 1) +
((SX1272.Settings.Fsk.FixLen == 0x01) ? 0.0 : 1.0) +
(((SX1272Read(REG_PACKETCONFIG1) & ~RF_PACKETCONFIG1_ADDRSFILTERING_MASK) != 0x00) ? 1.0 : 0) +
pktLen +
((SX1272.Settings.Fsk.CrcOn == 0x01) ? 2.0 : 0)) /
SX1272.Settings.Fsk.Datarate) * 1000);
break;
case MODEM_LORA:
switch (SX1272.Settings.LoRa.Bandwidth) {
case 0: // 125 kHz
bw = 125000;
break;
case 1: // 250 kHz
bw = 250000;
break;
case 2: // 500 kHz
bw = 500000;
break;
default:
bw = 0;
break;
}
// Symbol rate : time for one symbol (secs)
double rs = bw / (1 << SX1272.Settings.LoRa.Datarate);
double ts = 1 / rs;
// time of preamble
double tPreamble = (SX1272.Settings.LoRa.PreambleLen + 4.25) * ts;
// Symbol length of payload and time
double tmp = ceil((8 * pktLen - 4 * SX1272.Settings.LoRa.Datarate +
28 + 16 * SX1272.Settings.LoRa.CrcOn -
(SX1272.Settings.LoRa.FixLen ? 20 : 0)) /
(double)(4 * (SX1272.Settings.LoRa.Datarate -
((SX1272.Settings.LoRa.LowDatarateOptimize > 0) ? 2 : 0)))) *
(SX1272.Settings.LoRa.Coderate + 4);
double nPayload = 8 + ((tmp > 0) ? tmp : 0);
double tPayload = nPayload * ts;
// Time on air
double tOnAir = tPreamble + tPayload;
// return ms secs
airtime = floor(tOnAir * 1000 + 0.999);
break;
default:
airtime = 0;
break;
}
return airtime;
}
void
SX1272Send(uint8_t *buffer, uint8_t size)
{
uint32_t txtimeout;
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = size;
if (SX1272.Settings.Fsk.FixLen == false) {
SX1272WriteFifo((uint8_t*)&size, 1);
} else {
SX1272Write(REG_PAYLOADLENGTH, size);
}
if ((size > 0) && (size <= 64)) {
SX1272.Settings.FskPacketHandler.ChunkSize = size;
} else {
memcpy(g_rxtx_buffer, buffer, size);
SX1272.Settings.FskPacketHandler.ChunkSize = 32;
}
// Write payload buffer
SX1272WriteFifo(buffer, SX1272.Settings.FskPacketHandler.ChunkSize);
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.ChunkSize;
txtimeout = SX1272.Settings.Fsk.TxTimeout;
break;
case MODEM_LORA:
if (SX1272.Settings.LoRa.IqInverted == true) {
SX1272Write(REG_LR_INVERTIQ, ((SX1272Read(REG_LR_INVERTIQ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_ON));
SX1272Write(REG_LR_INVERTIQ2, RFLR_INVERTIQ2_ON);
} else {
SX1272Write(REG_LR_INVERTIQ, ((SX1272Read(REG_LR_INVERTIQ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_OFF));
SX1272Write(REG_LR_INVERTIQ2, RFLR_INVERTIQ2_OFF);
}
SX1272.Settings.LoRaPacketHandler.Size = size;
// Initializes the payload size
SX1272Write(REG_LR_PAYLOADLENGTH, size);
// Full buffer used for Tx
SX1272Write(REG_LR_FIFOTXBASEADDR, 0);
SX1272Write(REG_LR_FIFOADDRPTR, 0);
// FIFO operations can not take place in Sleep mode
if ((SX1272Read(REG_OPMODE) & ~RF_OPMODE_MASK) == RF_OPMODE_SLEEP) {
SX1272SetStby();
hal_timer_delay(SX1272_TIMER_NUM, 1000);
}
// Write payload buffer
SX1272WriteFifo(buffer, size);
txtimeout = SX1272.Settings.LoRa.TxTimeout;
break;
default:
txtimeout = 0;
break;
}
SX1272SetTx(txtimeout);
}
void
SX1272SetSleep(void)
{
hal_timer_stop(&RxTimeoutTimer);
hal_timer_stop(&TxTimeoutTimer);
SX1272SetOpMode(RF_OPMODE_SLEEP);
SX1272.Settings.State = RF_IDLE;
}
void
SX1272SetStby(void)
{
hal_timer_stop(&RxTimeoutTimer);
hal_timer_stop(&TxTimeoutTimer);
SX1272SetOpMode(RF_OPMODE_STANDBY);
SX1272.Settings.State = RF_IDLE;
}
void
SX1272SetRx(uint32_t timeout)
{
bool rxcontinuous = false;
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
rxcontinuous = SX1272.Settings.Fsk.RxContinuous;
// DIO0=PayloadReady
// DIO1=FifoLevel
// DIO2=SyncAddr
// DIO3=FifoEmpty
// DIO4=Preamble
// DIO5=ModeReady
SX1272Write(REG_DIOMAPPING1, (SX1272Read(REG_DIOMAPPING1) & RF_DIOMAPPING1_DIO0_MASK &
RF_DIOMAPPING1_DIO1_MASK &
RF_DIOMAPPING1_DIO2_MASK) |
RF_DIOMAPPING1_DIO0_00 |
RF_DIOMAPPING1_DIO1_00 |
RF_DIOMAPPING1_DIO2_11);
SX1272Write(REG_DIOMAPPING2, (SX1272Read(REG_DIOMAPPING2) & RF_DIOMAPPING2_DIO4_MASK &
RF_DIOMAPPING2_MAP_MASK) |
RF_DIOMAPPING2_DIO4_11 |
RF_DIOMAPPING2_MAP_PREAMBLEDETECT);
SX1272.Settings.FskPacketHandler.FifoThresh = SX1272Read(REG_FIFOTHRESH) & 0x3F;
SX1272Write(REG_RXCONFIG, RF_RXCONFIG_AFCAUTO_ON | RF_RXCONFIG_AGCAUTO_ON | RF_RXCONFIG_RXTRIGER_PREAMBLEDETECT);
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
break;
case MODEM_LORA:
if (SX1272.Settings.LoRa.IqInverted == true) {
SX1272Write(REG_LR_INVERTIQ, ((SX1272Read(REG_LR_INVERTIQ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK) | RFLR_INVERTIQ_RX_ON | RFLR_INVERTIQ_TX_OFF));
SX1272Write(REG_LR_INVERTIQ2, RFLR_INVERTIQ2_ON);
} else {
SX1272Write(REG_LR_INVERTIQ, ((SX1272Read(REG_LR_INVERTIQ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_OFF));
SX1272Write(REG_LR_INVERTIQ2, RFLR_INVERTIQ2_OFF);
}
rxcontinuous = SX1272.Settings.LoRa.RxContinuous;
if (SX1272.Settings.LoRa.FreqHopOn == true) {
SX1272Write(REG_LR_IRQFLAGSMASK, //RFLR_IRQFLAGS_RXTIMEOUT |
//RFLR_IRQFLAGS_RXDONE |
//RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
//RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED);
// DIO0=RxDone, DIO2=FhssChangeChannel
SX1272Write(REG_DIOMAPPING1, (SX1272Read(REG_DIOMAPPING1) & RFLR_DIOMAPPING1_DIO0_MASK & RFLR_DIOMAPPING1_DIO2_MASK ) | RFLR_DIOMAPPING1_DIO0_00 | RFLR_DIOMAPPING1_DIO2_00);
} else {
SX1272Write(REG_LR_IRQFLAGSMASK, //RFLR_IRQFLAGS_RXTIMEOUT |
//RFLR_IRQFLAGS_RXDONE |
//RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED);
// DIO0=RxDone
SX1272Write(REG_DIOMAPPING1, (SX1272Read(REG_DIOMAPPING1) & RFLR_DIOMAPPING1_DIO0_MASK) | RFLR_DIOMAPPING1_DIO0_00);
}
SX1272Write(REG_LR_FIFORXBASEADDR, 0);
SX1272Write(REG_LR_FIFOADDRPTR, 0);
break;
}
memset(g_rxtx_buffer, 0, (size_t)RX_BUFFER_SIZE);
SX1272.Settings.State = RF_RX_RUNNING;
if (timeout != 0) {
hal_timer_stop(&RxTimeoutTimer);
hal_timer_start(&RxTimeoutTimer, timeout * 1000);
}
if (SX1272.Settings.Modem == MODEM_FSK) {
SX1272SetOpMode(RF_OPMODE_RECEIVER);
if (rxcontinuous == false) {
hal_timer_stop(&RxTimeoutSyncWord);
hal_timer_start(&RxTimeoutSyncWord,
SX1272.Settings.Fsk.RxSingleTimeout * 1000);
}
} else {
if (rxcontinuous == true) {
SX1272SetOpMode(RFLR_OPMODE_RECEIVER);
} else {
SX1272SetOpMode(RFLR_OPMODE_RECEIVER_SINGLE);
}
}
}
void
SX1272SetTx(uint32_t timeout)
{
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
// DIO0=PacketSent
// DIO1=FifoEmpty
// DIO2=FifoFull
// DIO3=FifoEmpty
// DIO4=LowBat
// DIO5=ModeReady
SX1272Write(REG_DIOMAPPING1, (SX1272Read(REG_DIOMAPPING1) & RF_DIOMAPPING1_DIO0_MASK &
RF_DIOMAPPING1_DIO1_MASK &
RF_DIOMAPPING1_DIO2_MASK) |
RF_DIOMAPPING1_DIO1_01);
SX1272Write(REG_DIOMAPPING2, (SX1272Read(REG_DIOMAPPING2) & RF_DIOMAPPING2_DIO4_MASK &
RF_DIOMAPPING2_MAP_MASK));
SX1272.Settings.FskPacketHandler.FifoThresh = SX1272Read(REG_FIFOTHRESH) & 0x3F;
break;
case MODEM_LORA:
if (SX1272.Settings.LoRa.FreqHopOn == true) {
SX1272Write(REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
//RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
//RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED);
// DIO0=TxDone, DIO2=FhssChangeChannel
SX1272Write(REG_DIOMAPPING1, (SX1272Read(REG_DIOMAPPING1) & RFLR_DIOMAPPING1_DIO0_MASK & RFLR_DIOMAPPING1_DIO2_MASK) | RFLR_DIOMAPPING1_DIO0_01 | RFLR_DIOMAPPING1_DIO2_00);
} else {
SX1272Write(REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
//RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED);
// DIO0=TxDone
SX1272Write(REG_DIOMAPPING1, (SX1272Read(REG_DIOMAPPING1) & RFLR_DIOMAPPING1_DIO0_MASK) | RFLR_DIOMAPPING1_DIO0_01);
}
break;
}
SX1272.Settings.State = RF_TX_RUNNING;
hal_timer_stop(&TxTimeoutTimer);
hal_timer_start(&TxTimeoutTimer, timeout * 1000);
SX1272SetOpMode(RF_OPMODE_TRANSMITTER);
}
void
SX1272StartCad(void)
{
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
break;
case MODEM_LORA:
SX1272Write(REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
//RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL // |
//RFLR_IRQFLAGS_CADDETECTED
);
// DIO3=CADDone
SX1272Write(REG_DIOMAPPING1, (SX1272Read(REG_DIOMAPPING1) & RFLR_DIOMAPPING1_DIO3_MASK) | RFLR_DIOMAPPING1_DIO3_00);
SX1272.Settings.State = RF_CAD;
SX1272SetOpMode(RFLR_OPMODE_CAD);
break;
default:
break;
}
}
void
SX1272SetTxContinuousWave(uint32_t freq, int8_t power, uint16_t time)
{
uint32_t timeout = (uint32_t)(time * 1000);
SX1272SetChannel(freq);
SX1272SetTxConfig(MODEM_FSK, power, 0, 0, 4800, 0, 5, false, false, 0, 0, 0, timeout);
SX1272Write(REG_PACKETCONFIG2, (SX1272Read(REG_PACKETCONFIG2) & RF_PACKETCONFIG2_DATAMODE_MASK));
// Disable radio interrupts
SX1272Write(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_11 | RF_DIOMAPPING1_DIO1_11);
SX1272Write(REG_DIOMAPPING2, RF_DIOMAPPING2_DIO4_10 | RF_DIOMAPPING2_DIO5_10);
hal_timer_stop(&TxTimeoutTimer);
SX1272.Settings.State = RF_TX_RUNNING;
hal_timer_start(&TxTimeoutTimer, timeout * 1000);
SX1272SetOpMode(RF_OPMODE_TRANSMITTER);
}
int16_t
SX1272ReadRssi(RadioModems_t modem)
{
int16_t rssi;
switch (modem) {
case MODEM_FSK:
rssi = -(SX1272Read(REG_RSSIVALUE) >> 1);
break;
case MODEM_LORA:
rssi = RSSI_OFFSET + SX1272Read(REG_LR_RSSIVALUE);
break;
default:
rssi = -1;
break;
}
return rssi;
}
/**
* SX1272Reset
*
* As per Semtech, the reset sequence should be:
* - Drive reset pin high
* - Wait at least 100 usecs
* - Put pin in High-Z state (make it an input)
* - Wait at least 5 msecs
*
*/
void
SX1272Reset(void)
{
hal_gpio_init_out(SX1272_NRESET, 1);
hal_timer_delay(SX1272_TIMER_NUM, 1000);
hal_gpio_init_in(SX1272_NRESET, HAL_GPIO_PULL_NONE);
hal_timer_delay(SX1272_TIMER_NUM, 6000);
}
void
SX1272SetOpMode(uint8_t opMode)
{
if (opMode == RF_OPMODE_SLEEP) {
SX1272SetAntSwLowPower(true);
} else {
SX1272SetAntSwLowPower(false);
SX1272SetAntSw(opMode);
}
SX1272Write(REG_OPMODE, (SX1272Read(REG_OPMODE) & RF_OPMODE_MASK) | opMode);
}
void
SX1272SetModem(RadioModems_t modem)
{
if ((SX1272Read(REG_OPMODE) & RFLR_OPMODE_LONGRANGEMODE_ON) != 0) {
SX1272.Settings.Modem = MODEM_LORA;
} else {
SX1272.Settings.Modem = MODEM_FSK;
}
if (SX1272.Settings.Modem == modem) {
return;
}
SX1272.Settings.Modem = modem;
switch (SX1272.Settings.Modem) {
default:
case MODEM_FSK:
SX1272SetSleep();
SX1272Write(REG_OPMODE, (SX1272Read(REG_OPMODE) & RFLR_OPMODE_LONGRANGEMODE_MASK) | RFLR_OPMODE_LONGRANGEMODE_OFF);
SX1272Write(REG_DIOMAPPING1, 0x00);
SX1272Write(REG_DIOMAPPING2, 0x30); // DIO5=ModeReady
break;
case MODEM_LORA:
SX1272SetSleep();
SX1272Write(REG_OPMODE, (SX1272Read(REG_OPMODE) & RFLR_OPMODE_LONGRANGEMODE_MASK) | RFLR_OPMODE_LONGRANGEMODE_ON);
SX1272Write(REG_DIOMAPPING1, 0x00);
SX1272Write(REG_DIOMAPPING2, 0x00);
break;
}
}
void
SX1272Write(uint16_t addr, uint8_t data)
{
SX1272WriteBuffer(addr, &data, 1);
}
uint8_t
SX1272Read(uint16_t addr)
{
uint8_t data;
SX1272ReadBuffer(addr, &data, 1);
return data;
}
void
SX1272WriteBuffer(uint16_t addr, uint8_t *buffer, uint8_t size)
{
#if MYNEWT_VAL(BSP_USE_HAL_SPI) == 1
hal_gpio_write(RADIO_NSS, 0);
bsp_spi_write_buf(addr | 0x80, buffer, size);
hal_gpio_write(RADIO_NSS, 1);
#else
uint8_t i;
hal_gpio_write(RADIO_NSS, 0);
hal_spi_tx_val(RADIO_SPI_IDX, addr | 0x80);
for(i = 0; i < size; i++) {
hal_spi_tx_val(RADIO_SPI_IDX, buffer[i]);
}
hal_gpio_write(RADIO_NSS, 1);
#endif
}
void
SX1272ReadBuffer(uint16_t addr, uint8_t *buffer, uint8_t size)
{
#if MYNEWT_VAL(BSP_USE_HAL_SPI) == 1
hal_gpio_write(RADIO_NSS, 0);
bsp_spi_read_buf(addr & 0x7f, buffer, size);
hal_gpio_write(RADIO_NSS, 1);
#else
uint8_t i;
hal_gpio_write(RADIO_NSS, 0);
hal_spi_tx_val(RADIO_SPI_IDX, addr & 0x7f);
for(i = 0; i < size; i++) {
buffer[i] = hal_spi_tx_val(RADIO_SPI_IDX, 0);
}
hal_gpio_write(RADIO_NSS, 1);
#endif
}
void
SX1272WriteFifo(uint8_t *buffer, uint8_t size)
{
SX1272WriteBuffer(0, buffer, size);
}
void
SX1272ReadFifo(uint8_t *buffer, uint8_t size)
{
SX1272ReadBuffer(0, buffer, size);
}
void
SX1272SetMaxPayloadLength(RadioModems_t modem, uint8_t max)
{
SX1272SetModem(modem);
switch (modem) {
case MODEM_FSK:
if (SX1272.Settings.Fsk.FixLen == false) {
SX1272Write(REG_PAYLOADLENGTH, max);
}
break;
case MODEM_LORA:
SX1272Write(REG_LR_PAYLOADMAXLENGTH, max);
break;
}
}
void
SX1272SetPublicNetwork(bool enable)
{
SX1272SetModem(MODEM_LORA);
SX1272.Settings.LoRa.PublicNetwork = enable;
if (enable == true) {
// Change LoRa modem SyncWord
SX1272Write(REG_LR_SYNCWORD, LORA_MAC_PUBLIC_SYNCWORD);
} else {
// Change LoRa modem SyncWord
SX1272Write(REG_LR_SYNCWORD, LORA_MAC_PRIVATE_SYNCWORD);
}
}
uint32_t SX1272GetWakeupTime( void )
{
return SX1272GetBoardTcxoWakeupTime( ) + RADIO_WAKEUP_TIME;
}
void
SX1272OnTimeoutIrq(void *unused)
{
uint8_t i;
switch (SX1272.Settings.State) {
case RF_RX_RUNNING:
if (SX1272.Settings.Modem == MODEM_FSK) {
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
// Clear Irqs
SX1272Write(REG_IRQFLAGS1, RF_IRQFLAGS1_RSSI |
RF_IRQFLAGS1_PREAMBLEDETECT |
RF_IRQFLAGS1_SYNCADDRESSMATCH);
SX1272Write(REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN);
if (SX1272.Settings.Fsk.RxContinuous == true)
{
// Continuous mode restart Rx chain
SX1272Write(REG_RXCONFIG, SX1272Read(REG_RXCONFIG) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK);
hal_timer_stop(&RxTimeoutSyncWord);
hal_timer_start(&RxTimeoutSyncWord,
SX1272.Settings.Fsk.RxSingleTimeout * 1000);
} else {
SX1272.Settings.State = RF_IDLE;
hal_timer_stop(&RxTimeoutSyncWord);
}
}
if ((RadioEvents != NULL) && (RadioEvents->RxTimeout != NULL)) {
RadioEvents->RxTimeout();
}
break;
case RF_TX_RUNNING:
// Tx timeout shouldn't happen.
// But it has been observed that when it happens it is a result of a corrupted SPI transfer
// it depends on the platform design.
//
// The workaround is to put the radio in a known state. Thus, we re-initialize it.
// BEGIN WORKAROUND
// Reset the radio
SX1272Reset();
// Initialize radio default values
SX1272SetOpMode(RF_OPMODE_SLEEP);
for (i = 0; i < sizeof(RadioRegsInit) / sizeof(RadioRegisters_t); i++) {
SX1272SetModem(RadioRegsInit[i].Modem);
SX1272Write(RadioRegsInit[i].Addr, RadioRegsInit[i].Value);
}
SX1272SetModem(MODEM_FSK);
// Restore previous network type setting.
SX1272SetPublicNetwork(SX1272.Settings.LoRa.PublicNetwork);
// END WORKAROUND
SX1272.Settings.State = RF_IDLE;
if ((RadioEvents != NULL) && (RadioEvents->TxTimeout != NULL)) {
RadioEvents->TxTimeout();
}
break;
default:
break;
}
}
void
SX1272OnDio0Irq(void *unused)
{
volatile uint8_t irqFlags = 0;
int16_t rssi;
int8_t snr;
switch (SX1272.Settings.State) {
case RF_RX_RUNNING:
//TimerStop(&RxTimeoutTimer);
// RxDone interrupt
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
if (SX1272.Settings.Fsk.CrcOn == true) {
irqFlags = SX1272Read(REG_IRQFLAGS2);
if ((irqFlags & RF_IRQFLAGS2_CRCOK) != RF_IRQFLAGS2_CRCOK) {
// Clear Irqs
SX1272Write(REG_IRQFLAGS1, RF_IRQFLAGS1_RSSI |
RF_IRQFLAGS1_PREAMBLEDETECT |
RF_IRQFLAGS1_SYNCADDRESSMATCH);
SX1272Write(REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN);
hal_timer_stop(&RxTimeoutTimer);
if (SX1272.Settings.Fsk.RxContinuous == false) {
hal_timer_stop(&RxTimeoutSyncWord);
SX1272.Settings.State = RF_IDLE;
} else {
// Continuous mode restart Rx chain
SX1272Write(REG_RXCONFIG, SX1272Read(REG_RXCONFIG) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK);
hal_timer_stop(&RxTimeoutSyncWord);
hal_timer_start(&RxTimeoutSyncWord,
SX1272.Settings.Fsk.RxSingleTimeout * 1000);
}
if ((RadioEvents != NULL) && (RadioEvents->RxError != NULL)) {
RadioEvents->RxError();
}
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
break;
}
}
// Read received packet size
if ((SX1272.Settings.FskPacketHandler.Size == 0) && (SX1272.Settings.FskPacketHandler.NbBytes == 0)) {
if (SX1272.Settings.Fsk.FixLen == false) {
SX1272ReadFifo((uint8_t*)&SX1272.Settings.FskPacketHandler.Size, 1);
} else {
SX1272.Settings.FskPacketHandler.Size = SX1272Read(REG_PAYLOADLENGTH);
}
SX1272ReadFifo(g_rxtx_buffer + SX1272.Settings.FskPacketHandler.NbBytes, SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes);
SX1272.Settings.FskPacketHandler.NbBytes += (SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes);
} else {
SX1272ReadFifo(g_rxtx_buffer + SX1272.Settings.FskPacketHandler.NbBytes, SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes);
SX1272.Settings.FskPacketHandler.NbBytes += (SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes);
}
hal_timer_stop(&RxTimeoutTimer);
if (SX1272.Settings.Fsk.RxContinuous == false) {
SX1272.Settings.State = RF_IDLE;
hal_timer_stop(&RxTimeoutSyncWord);
} else {
// Continuous mode restart Rx chain
SX1272Write(REG_RXCONFIG, SX1272Read(REG_RXCONFIG) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK);
hal_timer_stop(&RxTimeoutSyncWord);
hal_timer_start(&RxTimeoutSyncWord,
SX1272.Settings.Fsk.RxSingleTimeout * 1000);
}
if ((RadioEvents != NULL) && (RadioEvents->RxDone != NULL)) {
RadioEvents->RxDone(g_rxtx_buffer, SX1272.Settings.FskPacketHandler.Size, SX1272.Settings.FskPacketHandler.RssiValue, 0);
}
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
break;
case MODEM_LORA:
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_RXDONE);
irqFlags = SX1272Read(REG_LR_IRQFLAGS);
if ((irqFlags & RFLR_IRQFLAGS_PAYLOADCRCERROR_MASK) == RFLR_IRQFLAGS_PAYLOADCRCERROR){
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_PAYLOADCRCERROR);
if (SX1272.Settings.LoRa.RxContinuous == false) {
SX1272.Settings.State = RF_IDLE;
}
hal_timer_stop(&RxTimeoutTimer);
if ((RadioEvents != NULL) && (RadioEvents->RxError != NULL)) {
RadioEvents->RxError();
}
break;
}
SX1272.Settings.LoRaPacketHandler.SnrValue = SX1272Read(REG_LR_PKTSNRVALUE);
if (SX1272.Settings.LoRaPacketHandler.SnrValue & 0x80) {
// The SNR sign bit is 1
// Invert and divide by 4
snr = ((~SX1272.Settings.LoRaPacketHandler.SnrValue + 1) & 0xFF) >> 2;
snr = -snr;
} else {
// Divide by 4
snr = (SX1272.Settings.LoRaPacketHandler.SnrValue & 0xFF) >> 2;
}
rssi = SX1272Read(REG_LR_PKTRSSIVALUE);
if (snr < 0) {
SX1272.Settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET + rssi + (rssi >> 4) +
snr;
} else {
SX1272.Settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET + rssi + (rssi >> 4);
}
SX1272.Settings.LoRaPacketHandler.Size = SX1272Read(REG_LR_RXNBBYTES);
SX1272Write(REG_LR_FIFOADDRPTR, SX1272Read(REG_LR_FIFORXCURRENTADDR));
SX1272ReadFifo(g_rxtx_buffer, SX1272.Settings.LoRaPacketHandler.Size);
if (SX1272.Settings.LoRa.RxContinuous == false) {
SX1272.Settings.State = RF_IDLE;
}
hal_timer_stop(&RxTimeoutTimer);
if ((RadioEvents != NULL) && (RadioEvents->RxDone != NULL)) {
RadioEvents->RxDone(g_rxtx_buffer,
SX1272.Settings.LoRaPacketHandler.Size,
SX1272.Settings.LoRaPacketHandler.RssiValue,
SX1272.Settings.LoRaPacketHandler.SnrValue);
}
break;
default:
break;
}
break;
case RF_TX_RUNNING:
hal_timer_stop(&TxTimeoutTimer);
// TxDone interrupt
switch (SX1272.Settings.Modem) {
case MODEM_LORA:
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_TXDONE);
// Intentional fall through
case MODEM_FSK:
default:
SX1272.Settings.State = RF_IDLE;
if ((RadioEvents != NULL) && (RadioEvents->TxDone != NULL)) {
RadioEvents->TxDone();
}
break;
}
break;
default:
break;
}
}
void
SX1272OnDio1Irq(void *unused)
{
switch (SX1272.Settings.State) {
case RF_RX_RUNNING:
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
// FifoLevel interrupt
// Read received packet size
if ((SX1272.Settings.FskPacketHandler.Size == 0) &&
(SX1272.Settings.FskPacketHandler.NbBytes == 0)) {
if (SX1272.Settings.Fsk.FixLen == false) {
SX1272ReadFifo((uint8_t*)&SX1272.Settings.FskPacketHandler.Size, 1);
} else {
SX1272.Settings.FskPacketHandler.Size = SX1272Read(REG_PAYLOADLENGTH);
}
}
if ((SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes) > SX1272.Settings.FskPacketHandler.FifoThresh) {
SX1272ReadFifo((g_rxtx_buffer + SX1272.Settings.FskPacketHandler.NbBytes), SX1272.Settings.FskPacketHandler.FifoThresh);
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.FifoThresh;
} else {
SX1272ReadFifo((g_rxtx_buffer + SX1272.Settings.FskPacketHandler.NbBytes), SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes);
SX1272.Settings.FskPacketHandler.NbBytes += (SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes);
}
break;
case MODEM_LORA:
// Sync time out
hal_timer_stop(&RxTimeoutTimer);
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_RXTIMEOUT);
SX1272.Settings.State = RF_IDLE;
if ((RadioEvents != NULL) && (RadioEvents->RxTimeout != NULL)) {
RadioEvents->RxTimeout();
}
break;
default:
break;
}
break;
case RF_TX_RUNNING:
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
// FifoEmpty interrupt
if ((SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes) > SX1272.Settings.FskPacketHandler.ChunkSize) {
SX1272WriteFifo((g_rxtx_buffer + SX1272.Settings.FskPacketHandler.NbBytes), SX1272.Settings.FskPacketHandler.ChunkSize);
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.ChunkSize;
} else {
// Write the last chunk of data
SX1272WriteFifo(g_rxtx_buffer + SX1272.Settings.FskPacketHandler.NbBytes, SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes);
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes;
}
break;
case MODEM_LORA:
break;
default:
break;
}
break;
default:
break;
}
}
void
SX1272OnDio2Irq(void *unused)
{
switch (SX1272.Settings.State) {
case RF_RX_RUNNING:
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
if ((SX1272.Settings.FskPacketHandler.PreambleDetected == true) &&
(SX1272.Settings.FskPacketHandler.SyncWordDetected == false)) {
hal_timer_stop(&RxTimeoutSyncWord);
SX1272.Settings.FskPacketHandler.SyncWordDetected = true;
SX1272.Settings.FskPacketHandler.RssiValue = -(SX1272Read(REG_RSSIVALUE) >> 1);
SX1272.Settings.FskPacketHandler.AfcValue = (int32_t)(double)(((uint16_t)SX1272Read(REG_AFCMSB) << 8) |
(uint16_t)SX1272Read(REG_AFCLSB)) *
(double)FREQ_STEP;
SX1272.Settings.FskPacketHandler.RxGain = (SX1272Read(REG_LNA) >> 5) & 0x07;
}
break;
case MODEM_LORA:
if (SX1272.Settings.LoRa.FreqHopOn == true) {
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL);
if ((RadioEvents != NULL) && (RadioEvents->FhssChangeChannel != NULL)) {
RadioEvents->FhssChangeChannel((SX1272Read(REG_LR_HOPCHANNEL) & RFLR_HOPCHANNEL_CHANNEL_MASK));
}
}
break;
default:
break;
}
break;
case RF_TX_RUNNING:
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
break;
case MODEM_LORA:
if (SX1272.Settings.LoRa.FreqHopOn == true) {
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL);
if ((RadioEvents != NULL) && (RadioEvents->FhssChangeChannel != NULL)) {
RadioEvents->FhssChangeChannel((SX1272Read(REG_LR_HOPCHANNEL) & RFLR_HOPCHANNEL_CHANNEL_MASK));
}
}
break;
default:
break;
}
break;
default:
break;
}
}
void
SX1272OnDio3Irq(void *unused)
{
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
break;
case MODEM_LORA:
if ((SX1272Read(REG_LR_IRQFLAGS) & RFLR_IRQFLAGS_CADDETECTED) == RFLR_IRQFLAGS_CADDETECTED) {
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDETECTED | RFLR_IRQFLAGS_CADDONE);
if ((RadioEvents != NULL) && (RadioEvents->CadDone != NULL)) {
RadioEvents->CadDone(true);
}
} else {
// Clear Irq
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDONE);
if ((RadioEvents != NULL) && (RadioEvents->CadDone != NULL)) {
RadioEvents->CadDone(false);
}
}
break;
default:
break;
}
}
void
SX1272OnDio4Irq(void *unused)
{
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
if (SX1272.Settings.FskPacketHandler.PreambleDetected == false) {
SX1272.Settings.FskPacketHandler.PreambleDetected = true;
}
break;
case MODEM_LORA:
break;
default:
break;
}
}
void
SX1272OnDio5Irq(void *unused)
{
switch (SX1272.Settings.Modem) {
case MODEM_FSK:
break;
case MODEM_LORA:
break;
default:
break;
}
}
void
SX1272RxDisable(void)
{
if (SX1272.Settings.Modem == MODEM_LORA) {
/* Disable GPIO interrupts */
SX1272RxIoIrqDisable();
/* Disable RX interrupts */
SX1272Write(REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT_MASK |
RFLR_IRQFLAGS_RXDONE_MASK |
RFLR_IRQFLAGS_PAYLOADCRCERROR_MASK |
RFLR_IRQFLAGS_CADDONE_MASK |
RFLR_IRQFLAGS_CADDETECTED_MASK);
/* Put radio into standby */
SX1272SetStby();
/* Clear any pending interrupts */
SX1272Write(REG_LR_IRQFLAGS, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR_MASK |
RFLR_IRQFLAGS_CADDONE_MASK |
RFLR_IRQFLAGS_CADDETECTED_MASK);
/* Enable GPIO interrupts */
SX1272RxIoIrqEnable();
}
}