blob: 176798d4b104781096f7b960b87be95b2a9756a8 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <assert.h>
#include <stddef.h>
#include <inttypes.h>
#include <ctype.h>
#include <stdio.h>
#include "os/mynewt.h"
#include <bsp/bsp.h>
#include <flash_map/flash_map.h>
#include <hal/hal_flash.h>
#include <hal/hal_system.h>
#include <hal/hal_gpio.h>
#include <hal/hal_watchdog.h>
#include <hal/hal_nvreg.h>
#include <tinycbor/cbor.h>
#include <tinycbor/cbor_buf_reader.h>
#include <base64/base64.h>
#include <crc/crc16.h>
#include <bootutil/image.h>
#include "boot_serial/boot_serial.h"
#include "boot_serial_priv.h"
#if MYNEWT_VAL(OS_CPUTIME_TIMER_NUM) < 0
#error "Boot serial needs OS_CPUTIME timer"
#endif
#define BOOT_SERIAL_INPUT_MAX 512
#define BOOT_SERIAL_OUT_MAX 80
#define BOOT_SERIAL_REPORT_DUR \
(MYNEWT_VAL(OS_CPUTIME_FREQ) / MYNEWT_VAL(BOOT_SERIAL_REPORT_FREQ))
static uint32_t curr_off;
static uint32_t img_size;
static struct nmgr_hdr *bs_hdr;
static char bs_obuf[BOOT_SERIAL_OUT_MAX];
static int bs_cbor_writer(struct cbor_encoder_writer *, const char *data,
int len);
static void boot_serial_output(void);
static struct cbor_encoder_writer bs_writer = {
.write = bs_cbor_writer
};
static CborEncoder bs_root;
static CborEncoder bs_rsp;
int
bs_cbor_writer(struct cbor_encoder_writer *cew, const char *data, int len)
{
if (cew->bytes_written + len > sizeof(bs_obuf)) {
return CborErrorOutOfMemory;
}
memcpy(&bs_obuf[cew->bytes_written], data, len);
cew->bytes_written += len;
return 0;
}
/*
* Convert version into string without use of snprintf().
*/
static int
u32toa(char *tgt, uint32_t val)
{
char *dst;
uint32_t d = 1;
uint32_t dgt;
int n = 0;
dst = tgt;
while (val / d >= 10) {
d *= 10;
}
while (d) {
dgt = val / d;
val %= d;
d /= 10;
if (n || dgt > 0 || d == 0) {
*dst++ = dgt + '0';
++n;
}
}
*dst = '\0';
return dst - tgt;
}
/*
* dst has to be able to fit "255.255.65535.4294967295" (25 characters).
*/
static void
bs_list_img_ver(char *dst, int maxlen, struct image_version *ver)
{
int off;
off = u32toa(dst, ver->iv_major);
dst[off++] = '.';
off += u32toa(dst + off, ver->iv_minor);
dst[off++] = '.';
off += u32toa(dst + off, ver->iv_revision);
dst[off++] = '.';
off += u32toa(dst + off, ver->iv_build_num);
}
/*
* List images.
*/
static void
bs_list(char *buf, int len)
{
CborEncoder images;
CborEncoder image;
struct image_header hdr;
uint8_t tmpbuf[64];
int i, area_id;
const struct flash_area *fap;
cbor_encoder_create_map(&bs_root, &bs_rsp, CborIndefiniteLength);
cbor_encode_text_stringz(&bs_rsp, "images");
cbor_encoder_create_array(&bs_rsp, &images, CborIndefiniteLength);
for (i = 0; i < 2; i++) {
area_id = flash_area_id_from_image_slot(i);
if (flash_area_open(area_id, &fap)) {
continue;
}
flash_area_read(fap, 0, &hdr, sizeof(hdr));
if (hdr.ih_magic != IMAGE_MAGIC ||
bootutil_img_validate(&hdr, fap, tmpbuf, sizeof(tmpbuf),
NULL, 0, NULL)) {
flash_area_close(fap);
continue;
}
flash_area_close(fap);
cbor_encoder_create_map(&images, &image, CborIndefiniteLength);
cbor_encode_text_stringz(&image, "slot");
cbor_encode_int(&image, i);
cbor_encode_text_stringz(&image, "version");
bs_list_img_ver((char *)tmpbuf, sizeof(tmpbuf), &hdr.ih_ver);
cbor_encode_text_stringz(&image, (char *)tmpbuf);
cbor_encoder_close_container(&images, &image);
}
cbor_encoder_close_container(&bs_rsp, &images);
cbor_encoder_close_container(&bs_root, &bs_rsp);
boot_serial_output();
}
/*
* Image upload request.
*/
static void
bs_upload(char *buf, int len)
{
CborParser parser;
struct cbor_buf_reader reader;
struct CborValue root_value;
struct CborValue value;
uint8_t img_data[512];
long long int off = UINT_MAX;
size_t img_blen = 0;
uint8_t rem_bytes;
long long int data_len = UINT_MAX;
size_t slen;
char name_str[8];
const struct flash_area *fap = NULL;
int rc;
memset(img_data, 0, sizeof(img_data));
cbor_buf_reader_init(&reader, (uint8_t *)buf, len);
cbor_parser_init(&reader.r, 0, &parser, &root_value);
/*
* Expected data format.
* {
* "data":<img_data>
* "len":<image len>
* "off":<current offset of image data>
* }
*/
/*
* Object comes within { ... }
*/
if (!cbor_value_is_container(&root_value)) {
goto out_invalid_data;
}
if (cbor_value_enter_container(&root_value, &value)) {
goto out_invalid_data;
}
while (cbor_value_is_valid(&value)) {
/*
* Decode key.
*/
if (cbor_value_calculate_string_length(&value, &slen)) {
goto out_invalid_data;
}
if (!cbor_value_is_text_string(&value) ||
slen >= sizeof(name_str) - 1) {
goto out_invalid_data;
}
if (cbor_value_copy_text_string(&value, name_str, &slen, &value)) {
goto out_invalid_data;
}
name_str[slen] = '\0';
if (!strcmp(name_str, "data")) {
/*
* Image data
*/
if (value.type != CborByteStringType) {
goto out_invalid_data;
}
if (cbor_value_calculate_string_length(&value, &slen) ||
slen >= sizeof(img_data)) {
goto out_invalid_data;
}
if (cbor_value_copy_byte_string(&value, img_data, &slen, &value)) {
goto out_invalid_data;
}
img_blen = slen;
} else if (!strcmp(name_str, "off")) {
/*
* Offset of the data.
*/
if (value.type != CborIntegerType) {
goto out_invalid_data;
}
if (cbor_value_get_int64(&value, &off)) {
goto out_invalid_data;
}
if (cbor_value_advance(&value)) {
goto out_invalid_data;
}
} else if (!strcmp(name_str, "len")) {
/*
* Length of the image. This should only be present in the first
* block of data; when offset is 0.
*/
if (value.type != CborIntegerType) {
goto out_invalid_data;
}
if (cbor_value_get_int64(&value, &data_len)) {
goto out_invalid_data;
}
if (cbor_value_advance(&value)) {
goto out_invalid_data;
}
} else {
/*
* Skip unknown keys.
*/
if (cbor_value_advance(&value)) {
goto out_invalid_data;
}
}
}
if (off == UINT_MAX) {
/*
* Offset must be set in every block.
*/
goto out_invalid_data;
}
rc = flash_area_open(flash_area_id_from_image_slot(0), &fap);
if (rc) {
rc = MGMT_ERR_EINVAL;
goto out;
}
if (off == 0) {
curr_off = 0;
if (data_len > fap->fa_size) {
goto out_invalid_data;
}
rc = flash_area_erase(fap, 0, fap->fa_size);
if (rc) {
rc = MGMT_ERR_EINVAL;
goto out;
}
img_size = data_len;
}
if (off != curr_off) {
rc = 0;
goto out;
}
if (curr_off + img_blen < img_size) {
rem_bytes = img_blen % flash_area_align(fap);
if (rem_bytes) {
img_blen -= rem_bytes;
}
}
rc = flash_area_write(fap, curr_off, img_data, img_blen);
if (rc == 0) {
curr_off += img_blen;
} else {
out_invalid_data:
rc = MGMT_ERR_EINVAL;
}
out:
cbor_encoder_create_map(&bs_root, &bs_rsp, CborIndefiniteLength);
cbor_encode_text_stringz(&bs_rsp, "rc");
cbor_encode_int(&bs_rsp, rc);
if (rc == 0) {
cbor_encode_text_stringz(&bs_rsp, "off");
cbor_encode_uint(&bs_rsp, curr_off);
}
cbor_encoder_close_container(&bs_root, &bs_rsp);
boot_serial_output();
flash_area_close(fap);
}
/*
* Console echo control/image erase. Send empty response, don't do anything.
*/
static void
bs_empty_rsp(char *buf, int len)
{
cbor_encoder_create_map(&bs_root, &bs_rsp, CborIndefiniteLength);
cbor_encode_text_stringz(&bs_rsp, "rc");
cbor_encode_int(&bs_rsp, 0);
cbor_encoder_close_container(&bs_root, &bs_rsp);
boot_serial_output();
}
/*
* Reset, and (presumably) boot to newly uploaded image. Flush console
* before restarting.
*/
static int
bs_reset(char *buf, int len)
{
bs_empty_rsp(buf, len);
os_cputime_delay_usecs(250000);
hal_system_reset();
}
/*
* Parse incoming line of input from console.
* Expect newtmgr protocol with serial transport.
*/
void
boot_serial_input(char *buf, int len)
{
struct nmgr_hdr *hdr;
hdr = (struct nmgr_hdr *)buf;
if (len < sizeof(*hdr) ||
(hdr->nh_op != NMGR_OP_READ && hdr->nh_op != NMGR_OP_WRITE) ||
(ntohs(hdr->nh_len) < len - sizeof(*hdr))) {
return;
}
bs_hdr = hdr;
hdr->nh_group = ntohs(hdr->nh_group);
buf += sizeof(*hdr);
len -= sizeof(*hdr);
bs_writer.bytes_written = 0;
cbor_encoder_init(&bs_root, &bs_writer, 0);
/*
* Limited support for commands.
*/
if (hdr->nh_group == MGMT_GROUP_ID_IMAGE) {
switch (hdr->nh_id) {
case IMGMGR_NMGR_ID_STATE:
bs_list(buf, len);
break;
case IMGMGR_NMGR_ID_UPLOAD:
bs_upload(buf, len);
break;
default:
bs_empty_rsp(buf, len);
break;
}
} else if (hdr->nh_group == MGMT_GROUP_ID_DEFAULT) {
switch (hdr->nh_id) {
case NMGR_ID_CONS_ECHO_CTRL:
bs_empty_rsp(buf, len);
break;
case NMGR_ID_RESET:
bs_reset(buf, len);
break;
default:
break;
}
}
}
static void
boot_serial_output(void)
{
char *data;
int len;
uint16_t crc;
uint16_t totlen;
char pkt_start[2] = { SHELL_NLIP_PKT_START1, SHELL_NLIP_PKT_START2 };
char buf[BOOT_SERIAL_OUT_MAX];
char encoded_buf[BASE64_ENCODE_SIZE(BOOT_SERIAL_OUT_MAX)];
data = bs_obuf;
len = bs_writer.bytes_written;
bs_hdr->nh_op++;
bs_hdr->nh_flags = 0;
bs_hdr->nh_len = htons(len);
bs_hdr->nh_group = htons(bs_hdr->nh_group);
crc = crc16_ccitt(CRC16_INITIAL_CRC, bs_hdr, sizeof(*bs_hdr));
crc = crc16_ccitt(crc, data, len);
crc = htons(crc);
boot_serial_uart_write(pkt_start, sizeof(pkt_start));
totlen = len + sizeof(*bs_hdr) + sizeof(crc);
totlen = htons(totlen);
memcpy(buf, &totlen, sizeof(totlen));
totlen = sizeof(totlen);
memcpy(&buf[totlen], bs_hdr, sizeof(*bs_hdr));
totlen += sizeof(*bs_hdr);
memcpy(&buf[totlen], data, len);
totlen += len;
memcpy(&buf[totlen], &crc, sizeof(crc));
totlen += sizeof(crc);
totlen = base64_encode(buf, totlen, encoded_buf, 1);
boot_serial_uart_write(encoded_buf, totlen);
boot_serial_uart_write("\n\r", 2);
}
/*
* Returns 1 if full packet has been received.
*/
static int
boot_serial_in_dec(char *in, int inlen, char *out, int *out_off, int maxout)
{
int rc;
uint16_t crc;
uint16_t len;
if (*out_off + base64_decode_len(in) >= maxout) {
return -1;
}
rc = base64_decode(in, &out[*out_off]);
if (rc < 0) {
return -1;
}
*out_off += rc;
if (*out_off > sizeof(uint16_t)) {
len = ntohs(*(uint16_t *)out);
len = min(len, *out_off - sizeof(uint16_t));
out += sizeof(uint16_t);
crc = crc16_ccitt(CRC16_INITIAL_CRC, out, len);
if (crc || len <= sizeof(crc)) {
return 0;
}
*out_off -= sizeof(crc);
out[*out_off] = '\0';
return 1;
}
return 0;
}
#if MYNEWT_VAL(BOOT_SERIAL_DETECT_TIMEOUT) != 0
/** Don't include null-terminator in comparison. */
#define BOOT_SERIAL_DETECT_STRING_LEN \
(sizeof MYNEWT_VAL(BOOT_SERIAL_DETECT_STRING) - 1)
/**
* Listens on the UART for the management string. Blocks for up to
* BOOT_SERIAL_DETECT_TIMEOUT milliseconds.
*
* @return true if the management string was received;
* false if the management string was not received
* before the UART listen timeout expired.
*/
static bool
boot_serial_detect_uart_string(void)
{
uint32_t start_tick;
char buf[BOOT_SERIAL_DETECT_STRING_LEN] = { 0 };
char ch;
int newline;
int rc;
/* Calculate the timeout duration in OS cputime ticks. */
static const uint32_t timeout_dur =
MYNEWT_VAL(BOOT_SERIAL_DETECT_TIMEOUT) /
(1000.0 / MYNEWT_VAL(OS_CPUTIME_FREQ));
rc = boot_serial_uart_open();
assert(rc == 0);
start_tick = os_cputime_get32();
while (1) {
/* Read a single character from the UART. */
rc = boot_serial_uart_read(&ch, 1, &newline);
if (rc > 0) {
/* Eliminate the oldest character in the buffer to make room for
* the new one.
*/
memmove(buf, buf + 1, BOOT_SERIAL_DETECT_STRING_LEN - 1);
buf[BOOT_SERIAL_DETECT_STRING_LEN - 1] = ch;
/* If the full management string has been received, indicate that
* the serial boot loader should start.
*/
rc = memcmp(buf,
MYNEWT_VAL(BOOT_SERIAL_DETECT_STRING),
BOOT_SERIAL_DETECT_STRING_LEN);
if (rc == 0) {
boot_serial_uart_close();
return true;
}
}
/* Abort the listen on timeout. */
if (os_cputime_get32() >= start_tick + timeout_dur) {
boot_serial_uart_close();
return false;
}
}
}
#endif
/*
* Task which waits reading console, expecting to get image over
* serial port.
*/
void
boot_serial_start(int max_input)
{
int rc;
int off;
char *buf;
char *dec;
int dec_off;
int full_line;
#if MYNEWT_VAL(BOOT_SERIAL_REPORT_PIN) != -1
uint32_t tick;
#endif
#if 0
/*
* This is commented out, as it includes divide operation, bloating
* the bootloader 10%.
* Note that there are calls to hal_watchdog_tickle() in the subsequent
* code.
*/
rc = hal_watchdog_init(MYNEWT_VAL(WATCHDOG_INTERVAL));
assert(rc == 0);
#endif
#if MYNEWT_VAL(BOOT_SERIAL_REPORT_PIN) != -1
/*
* Configure GPIO line as output. This is a pin we toggle at the
* given frequency.
*/
hal_gpio_init_out(MYNEWT_VAL(BOOT_SERIAL_REPORT_PIN), 0);
tick = os_cputime_get32();
#endif
rc = boot_serial_uart_open();
assert(rc == 0);
buf = os_malloc(max_input);
dec = os_malloc(max_input);
assert(buf && dec);
off = 0;
while (1) {
hal_watchdog_tickle();
#if MYNEWT_VAL(BOOT_SERIAL_REPORT_PIN) != -1
if (os_cputime_get32() - tick > BOOT_SERIAL_REPORT_DUR) {
hal_gpio_toggle(MYNEWT_VAL(BOOT_SERIAL_REPORT_PIN));
tick = os_cputime_get32();
}
#endif
rc = boot_serial_uart_read(buf + off, max_input - off, &full_line);
if (rc <= 0 && !full_line) {
continue;
}
off += rc;
if (!full_line) {
if (off == max_input) {
/*
* Full line, no newline yet. Reset the input buffer.
*/
off = 0;
}
continue;
}
if (buf[0] == SHELL_NLIP_PKT_START1 &&
buf[1] == SHELL_NLIP_PKT_START2) {
dec_off = 0;
rc = boot_serial_in_dec(&buf[2], off - 2, dec, &dec_off, max_input);
} else if (buf[0] == SHELL_NLIP_DATA_START1 &&
buf[1] == SHELL_NLIP_DATA_START2) {
rc = boot_serial_in_dec(&buf[2], off - 2, dec, &dec_off, max_input);
}
if (rc == 1) {
boot_serial_input(&dec[2], dec_off - 2);
}
off = 0;
}
}
/*
* os_init() will not be called with bootloader, so we need to initialize
* devices created by hal_bsp_init() here.
*/
void
boot_serial_os_dev_init(void)
{
os_dev_initialize_all(OS_DEV_INIT_PRIMARY);
os_dev_initialize_all(OS_DEV_INIT_SECONDARY);
/*
* Configure GPIO line as input. This is read later to see if
* we should stay and keep waiting for input.
*/
#if MYNEWT_VAL(BOOT_SERIAL_DETECT_PIN) != -1
hal_gpio_init_in(MYNEWT_VAL(BOOT_SERIAL_DETECT_PIN),
MYNEWT_VAL(BOOT_SERIAL_DETECT_PIN_CFG));
#endif
}
void
boot_serial_pkg_init(void)
{
/*
* Read retained register and compare with expected magic value.
* If it matches, await for download commands from serial.
*/
#if MYNEWT_VAL(BOOT_SERIAL_NVREG_INDEX) != -1
if (hal_nvreg_read(MYNEWT_VAL(BOOT_SERIAL_NVREG_INDEX)) ==
MYNEWT_VAL(BOOT_SERIAL_NVREG_MAGIC)) {
hal_nvreg_write(MYNEWT_VAL(BOOT_SERIAL_NVREG_INDEX), 0);
boot_serial_start(BOOT_SERIAL_INPUT_MAX);
assert(0);
}
#endif
/*
* Configure a GPIO as input, and compare it against expected value.
* If it matches, await for download commands from serial.
*/
#if MYNEWT_VAL(BOOT_SERIAL_DETECT_PIN) != -1
if (hal_gpio_read(MYNEWT_VAL(BOOT_SERIAL_DETECT_PIN)) ==
MYNEWT_VAL(BOOT_SERIAL_DETECT_PIN_VAL)) {
boot_serial_start(BOOT_SERIAL_INPUT_MAX);
assert(0);
}
#endif
/*
* Listen for management pattern in UART input. If detected, await for
* download commands from serial.
*/
#if MYNEWT_VAL(BOOT_SERIAL_DETECT_TIMEOUT) != 0
if (boot_serial_detect_uart_string()) {
boot_serial_start(BOOT_SERIAL_INPUT_MAX);
assert(0);
}
#endif
}