blob: 854d73f10adc8071365d0bec9d16d9f5ab16b5e8 [file] [log] [blame]
/**
******************************************************************************
* @file stm32f4xx_hal_cryp.c
* @author MCD Application Team
* @brief CRYP HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Cryptography (CRYP) peripheral:
* + Initialization and de-initialization functions
* + AES processing functions
* + DES processing functions
* + TDES processing functions
* + DMA callback functions
* + CRYP IRQ handler management
* + Peripheral State functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The CRYP HAL driver can be used as follows:
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
(##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()
(##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT())
(+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
(+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
(+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
(##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA())
(+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE()
(+++) Configure and enable two DMA streams one for managing data transfer from
memory to peripheral (input stream) and another stream for managing data
transfer from peripheral to memory (output stream)
(+++) Associate the initialized DMA handle to the CRYP DMA handle
using __HAL_LINKDMA()
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the two DMA Streams. The output stream should have higher
priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
(#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
(##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
(##) The key size: 128, 192 and 256. This parameter is relevant only for AES
(##) The encryption/decryption key. It's size depends on the algorithm
used for encryption/decryption
(##) The initialization vector (counter). It is not used ECB mode.
(#)Three processing (encryption/decryption) functions are available:
(##) Polling mode: encryption and decryption APIs are blocking functions
i.e. they process the data and wait till the processing is finished,
e.g. HAL_CRYP_AESCBC_Encrypt()
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
i.e. they process the data under interrupt,
e.g. HAL_CRYP_AESCBC_Encrypt_IT()
(##) DMA mode: encryption and decryption APIs are not blocking functions
i.e. the data transfer is ensured by DMA,
e.g. HAL_CRYP_AESCBC_Encrypt_DMA()
(#)When the processing function is called at first time after HAL_CRYP_Init()
the CRYP peripheral is initialized and processes the buffer in input.
At second call, the processing function performs an append of the already
processed buffer.
When a new data block is to be processed, call HAL_CRYP_Init() then the
processing function.
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
#ifdef HAL_CRYP_MODULE_ENABLED
#if defined(CRYP)
/** @defgroup CRYP CRYP
* @brief CRYP HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup CRYP_Private_define
* @{
*/
#define CRYP_TIMEOUT_VALUE 1U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup CRYP_Private_Functions_prototypes
* @{
*/
static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize);
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize);
static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction);
static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction);
static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction);
static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction);
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup CRYP_Private_Functions
* @{
*/
/**
* @brief DMA CRYP Input Data process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Disable the DMA transfer for input FIFO request by resetting the DIEN bit
in the DMACR register */
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
/* Call input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
/**
* @brief DMA CRYP Output Data process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Disable the DMA transfer for output FIFO request by resetting the DOEN bit
in the DMACR register */
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Change the CRYP state to ready */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call output data transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
/**
* @brief DMA CRYP communication error callback.
* @param hdma DMA handle
* @retval None
*/
static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
hcryp->State= HAL_CRYP_STATE_READY;
HAL_CRYP_ErrorCallback(hcryp);
}
/**
* @brief Writes the Key in Key registers.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Key Pointer to Key buffer
* @param KeySize Size of Key
* @retval None
*/
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize)
{
uint32_t keyaddr = (uint32_t)Key;
switch(KeySize)
{
case CRYP_KEYSIZE_256B:
/* Key Initialisation */
hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
case CRYP_KEYSIZE_192B:
hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
case CRYP_KEYSIZE_128B:
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
}
/**
* @brief Writes the InitVector/InitCounter in IV registers.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param InitVector Pointer to InitVector/InitCounter buffer
* @param IVSize Size of the InitVector/InitCounter
* @retval None
*/
static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize)
{
uint32_t ivaddr = (uint32_t)InitVector;
switch(IVSize)
{
case CRYP_KEYSIZE_128B:
hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr));
break;
/* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */
case CRYP_KEYSIZE_192B:
hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr));
break;
case CRYP_KEYSIZE_256B:
hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr));
break;
default:
break;
}
}
/**
* @brief Process Data: Writes Input data in polling mode and read the output data
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input Pointer to the Input buffer
* @param Ilength Length of the Input buffer, must be a multiple of 16.
* @param Output Pointer to the returned buffer
* @param Timeout Timeout value
* @retval None
*/
static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
{
uint32_t tickstart = 0U;
uint32_t i = 0U;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
for(i=0U; (i < Ilength); i+=16U)
{
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Process Data: Write Input data in polling mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input Pointer to the Input buffer
* @param Ilength Length of the Input buffer, must be a multiple of 8
* @param Output Pointer to the returned buffer
* @param Timeout Specify Timeout value
* @retval None
*/
static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
{
uint32_t tickstart = 0U;
uint32_t i = 0U;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
for(i=0U; (i < Ilength); i+=8U)
{
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Set the DMA configuration and start the DMA transfer
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param inputaddr address of the Input buffer
* @param Size Size of the Input buffer, must be a multiple of 16.
* @param outputaddr address of the Output buffer
* @retval None
*/
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
{
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
/* Set the DMA error callback */
hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
/* Set the DMA error callback */
hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Enable the DMA In DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4U);
/* Enable In DMA request */
hcryp->Instance->DMACR = (CRYP_DMACR_DIEN);
/* Enable the DMA Out DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4U);
/* Enable Out DMA request */
hcryp->Instance->DMACR |= CRYP_DMACR_DOEN;
}
/**
* @brief Sets the CRYP peripheral in DES ECB mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Direction Encryption or decryption
* @retval None
*/
static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction)
{
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_ECB | Direction);
/* Set the key */
hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey));
hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4U));
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
}
/**
* @brief Sets the CRYP peripheral in DES CBC mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Direction Encryption or decryption
* @retval None
*/
static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction)
{
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_CBC | Direction);
/* Set the key */
hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey));
hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4U));
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
}
/**
* @brief Sets the CRYP peripheral in TDES ECB mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Direction Encryption or decryption
* @retval None
*/
static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction)
{
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_ECB | Direction);
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
}
/**
* @brief Sets the CRYP peripheral in TDES CBC mode
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Direction Encryption or decryption
* @retval None
*/
static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction)
{
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the CRYP peripheral in AES CBC mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_CBC | Direction);
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
}
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CRYP_Exported_Functions
* @{
*/
/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions.
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Initialize the CRYP according to the specified parameters
in the CRYP_InitTypeDef and creates the associated handle
(+) DeInitialize the CRYP peripheral
(+) Initialize the CRYP MSP
(+) DeInitialize CRYP MSP
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP according to the specified
* parameters in the CRYP_InitTypeDef and creates the associated handle.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
if(hcryp->State == HAL_CRYP_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcryp->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_CRYP_MspInit(hcryp);
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set the key size and data type*/
CRYP->CR = (uint32_t) (hcryp->Init.KeySize | hcryp->Init.DataType);
/* Reset CrypInCount and CrypOutCount */
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Set the default CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief DeInitializes the CRYP peripheral.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set the default CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_READY;
/* Reset CrypInCount and CrypOutCount */
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
/* Disable the CRYP Peripheral Clock */
__HAL_CRYP_DISABLE(hcryp);
/* DeInit the low level hardware: CLOCK, NVIC.*/
HAL_CRYP_MspDeInit(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP MSP.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes CRYP MSP.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group2 AES processing functions
* @brief processing functions.
*
@verbatim
==============================================================================
##### AES processing functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Encrypt plaintext using AES-128/192/256 using chaining modes
(+) Decrypt cyphertext using AES-128/192/256 using chaining modes
[..] Three processing functions are available:
(+) Polling mode
(+) Interrupt mode
(+) DMA mode
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP peripheral in AES ECB encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CTR encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
uint32_t tickstart = 0U;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES Key mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Reset the ALGOMODE bits*/
CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE);
/* Set the CRYP peripheral in AES ECB decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
uint32_t tickstart = 0U;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES Key mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Reset the ALGOMODE bits*/
CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE);
/* Set the CRYP peripheral in AES CBC decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CTR decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CBC mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0U;
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES Key mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Reset the ALGOMODE bits*/
CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE);
/* Set the CRYP peripheral in AES ECB decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0U;
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES Key mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Reset the ALGOMODE bits*/
CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE);
/* Set the CRYP peripheral in AES CBC decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0U;
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES Key mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Reset the ALGOMODE bits*/
CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE);
/* Set the CRYP peripheral in AES ECB decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0U;
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES Key mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Reset the ALGOMODE bits*/
CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE);
/* Set the CRYP peripheral in AES CBC decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group3 DES processing functions
* @brief processing functions.
*
@verbatim
==============================================================================
##### DES processing functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Encrypt plaintext using DES using ECB or CBC chaining modes
(+) Decrypt cyphertext using ECB or CBC chaining modes
[..] Three processing functions are available:
(+) Polling mode
(+) Interrupt mode
(+) DMA mode
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP peripheral in DES ECB encryption mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES ECB encryption mode */
CRYP_SetDESECBMode(hcryp, 0U);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES ECB decryption mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES ECB decryption mode */
CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES CBC encryption mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES CBC encryption mode */
CRYP_SetDESCBCMode(hcryp, 0U);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES ECB decryption mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES CBC decryption mode */
CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES ECB encryption mode using IT.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES ECB encryption mode */
CRYP_SetDESECBMode(hcryp, 0U);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
/* Disable IT */
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES CBC encryption mode using interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES CBC encryption mode */
CRYP_SetDESCBCMode(hcryp, 0U);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
/* Disable IT */
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES ECB decryption mode using IT.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES ECB decryption mode */
CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
/* Disable IT */
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES ECB decryption mode using interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES CBC decryption mode */
CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
/* Disable IT */
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in DES ECB encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES ECB encryption mode */
CRYP_SetDESECBMode(hcryp, 0U);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in DES CBC encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES CBC encryption mode */
CRYP_SetDESCBCMode(hcryp, 0U);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES ECB decryption mode */
CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in DES CBC decryption mode */
CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group4 TDES processing functions
* @brief processing functions.
*
@verbatim
==============================================================================
##### TDES processing functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Encrypt plaintext using TDES based on ECB or CBC chaining modes
(+) Decrypt cyphertext using TDES based on ECB or CBC chaining modes
[..] Three processing functions are available:
(+) Polling mode
(+) Interrupt mode
(+) DMA mode
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP peripheral in TDES ECB encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES ECB encryption mode */
CRYP_SetTDESECBMode(hcryp, 0U);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES ECB decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES ECB decryption mode */
CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Cypher Data and Get Plain Data */
if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES CBC encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES CBC encryption mode */
CRYP_SetTDESCBCMode(hcryp, 0U);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES CBC decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES CBC decryption mode */
CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Write Cypher Data and Get Plain Data */
if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES ECB encryption mode using interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES ECB encryption mode */
CRYP_SetTDESECBMode(hcryp, 0U);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
/* Disable IT */
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call the Output data transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES CBC encryption mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES CBC encryption mode */
CRYP_SetTDESCBCMode(hcryp, 0U);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES ECB decryption mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES ECB decryption mode */
CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES CBC decryption mode.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES CBC decryption mode */
CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR);
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 8U;
hcryp->CrypInCount -= 8U;
if(hcryp->CrypInCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 8U;
hcryp->CrypOutCount -= 8U;
if(hcryp->CrypOutCount == 0U)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in TDES ECB encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES ECB encryption mode */
CRYP_SetTDESECBMode(hcryp, 0U);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in TDES CBC encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES CBC encryption mode */
CRYP_SetTDESCBCMode(hcryp, 0U);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in TDES ECB decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pCypherData Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES ECB decryption mode */
CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in TDES CBC decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 8
* @param pPlainData Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set CRYP peripheral in TDES CBC decryption mode */
CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR);
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group5 DMA callback functions
* @brief DMA callback functions.
*
@verbatim
==============================================================================
##### DMA callback functions #####
==============================================================================
[..] This section provides DMA callback functions:
(+) DMA Input data transfer complete
(+) DMA Output data transfer complete
(+) DMA error
@endverbatim
* @{
*/
/**
* @brief Input FIFO transfer completed callbacks.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_InCpltCallback could be implemented in the user file
*/
}
/**
* @brief Output FIFO transfer completed callbacks.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_OutCpltCallback could be implemented in the user file
*/
}
/**
* @brief CRYP error callbacks.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CRYP_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group6 CRYP IRQ handler management
* @brief CRYP IRQ handler.
*
@verbatim
==============================================================================
##### CRYP IRQ handler management #####
==============================================================================
[..] This section provides CRYP IRQ handler function.
@endverbatim
* @{
*/
/**
* @brief This function handles CRYP interrupt request.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
{
switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION)
{
case CRYP_CR_ALGOMODE_TDES_ECB_ENCRYPT:
HAL_CRYP_TDESECB_Encrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_TDES_ECB_DECRYPT:
HAL_CRYP_TDESECB_Decrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_TDES_CBC_ENCRYPT:
HAL_CRYP_TDESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_TDES_CBC_DECRYPT:
HAL_CRYP_TDESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_DES_ECB_ENCRYPT:
HAL_CRYP_DESECB_Encrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_DES_ECB_DECRYPT:
HAL_CRYP_DESECB_Decrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_DES_CBC_ENCRYPT:
HAL_CRYP_DESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_DES_CBC_DECRYPT:
HAL_CRYP_DESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT:
HAL_CRYP_AESECB_Encrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_AES_ECB_DECRYPT:
HAL_CRYP_AESECB_Decrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT:
HAL_CRYP_AESCBC_Encrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CBC_DECRYPT:
HAL_CRYP_AESCBC_Decrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT:
HAL_CRYP_AESCTR_Encrypt_IT(hcryp, NULL, 0U, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CTR_DECRYPT:
HAL_CRYP_AESCTR_Decrypt_IT(hcryp, NULL, 0U, NULL);
break;
default:
break;
}
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group7 Peripheral State functions
* @brief Peripheral State functions.
*
@verbatim
==============================================================================
##### Peripheral State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Returns the CRYP state.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL state
*/
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
{
return hcryp->State;
}
/**
* @}
*/
/**
* @}
*/
#endif /* CRYP */
#if defined (AES)
/** @defgroup AES AES
* @brief AES HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private functions --------------------------------------------------------*/
/** @defgroup CRYP_Private_Functions CRYP Private Functions
* @{
*/
static HAL_StatusTypeDef CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_SetKey(CRYP_HandleTypeDef *hcryp);
static HAL_StatusTypeDef CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup CRYP_Exported_Functions CRYP Exported Functions
* @{
*/
/** @defgroup CRYP_Exported_Functions_Group1 Initialization and deinitialization functions
* @brief Initialization and Configuration functions.
*
@verbatim
==============================================================================
##### Initialization and deinitialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Initialize the CRYP according to the specified parameters
in the CRYP_InitTypeDef and creates the associated handle
(+) DeInitialize the CRYP peripheral
(+) Initialize the CRYP MSP (MCU Specific Package)
(+) De-Initialize the CRYP MSP
[..]
(@) Specific care must be taken to format the key and the Initialization Vector IV!
[..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where
b127 is the MSB and b0 the LSB, the key must be stored in MCU memory
(+) as a sequence of words where the MSB word comes first (occupies the
lowest memory address)
(+) where each word is byte-swapped:
(++) address n+0 : 0b b103 .. b96 b111 .. b104 b119 .. b112 b127 .. b120
(++) address n+4 : 0b b71 .. b64 b79 .. b72 b87 .. b80 b95 .. b88
(++) address n+8 : 0b b39 .. b32 b47 .. b40 b55 .. b48 b63 .. b56
(++) address n+C : 0b b7 .. b0 b15 .. b8 b23 .. b16 b31 .. b24
[..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}.
The 4 32-bit words that make the key must be stored as follows in MCU memory:
(+) address n+0 : 0x B12 B13 B14 B15
(+) address n+4 : 0x B8 B9 B10 B11
(+) address n+8 : 0x B4 B5 B6 B7
(+) address n+C : 0x B0 B1 B2 B3
[..] which leads to the expected setting
(+) AES_KEYR3 = 0x B15 B14 B13 B12
(+) AES_KEYR2 = 0x B11 B10 B9 B8
(+) AES_KEYR1 = 0x B7 B6 B5 B4
(+) AES_KEYR0 = 0x B3 B2 B1 B0
[..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}.
The 8 32-bit words that make the key must be stored as follows in MCU memory:
(+) address n+00 : 0x B28 B29 B30 B31
(+) address n+04 : 0x B24 B25 B26 B27
(+) address n+08 : 0x B20 B21 B22 B23
(+) address n+0C : 0x B16 B17 B18 B19
(+) address n+10 : 0x B12 B13 B14 B15
(+) address n+14 : 0x B8 B9 B10 B11
(+) address n+18 : 0x B4 B5 B6 B7
(+) address n+1C : 0x B0 B1 B2 B3
[..] which leads to the expected setting
(+) AES_KEYR7 = 0x B31 B30 B29 B28
(+) AES_KEYR6 = 0x B27 B26 B25 B24
(+) AES_KEYR5 = 0x B23 B22 B21 B20
(+) AES_KEYR4 = 0x B19 B18 B17 B16
(+) AES_KEYR3 = 0x B15 B14 B13 B12
(+) AES_KEYR2 = 0x B11 B10 B9 B8
(+) AES_KEYR1 = 0x B7 B6 B5 B4
(+) AES_KEYR0 = 0x B3 B2 B1 B0
[..] Initialization Vector IV (4 32-bit words) format must follow the same as
that of a 128-bit long key.
[..]
@endverbatim
* @{
*/
/**
* @brief Initialize the CRYP according to the specified
* parameters in the CRYP_InitTypeDef and initialize the associated handle.
* @note Specific care must be taken to format the key and the Initialization Vector IV
* stored in the MCU memory before calling HAL_CRYP_Init(). Refer to explanations
* hereabove.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Check the instance */
assert_param(IS_AES_ALL_INSTANCE(hcryp->Instance));
/* Check the parameters */
assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
assert_param(IS_CRYP_ALGOMODE(hcryp->Init.OperatingMode));
/* ChainingMode parameter is irrelevant when mode is set to Key derivation */
if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
{
assert_param(IS_CRYP_CHAINMODE(hcryp->Init.ChainingMode));
}
assert_param(IS_CRYP_WRITE(hcryp->Init.KeyWriteFlag));
/*========================================================*/
/* Check the proper operating/chaining modes combinations */
/*========================================================*/
/* Check the proper chaining when the operating mode is key derivation and decryption */
#if defined(AES_CR_NPBLB)
if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION_DECRYPT) &&\
((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CTR) \
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) \
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)))
#else
if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION_DECRYPT) &&\
((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CTR) \
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) \
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)))
#endif
{
return HAL_ERROR;
}
/* Check that key derivation is not set in CMAC mode or CCM mode when applicable */
#if defined(AES_CR_NPBLB)
if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
&& (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC))
#else
if ((hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
&& (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC))
#endif
{
return HAL_ERROR;
}
/*================*/
/* Initialization */
/*================*/
/* Initialization start */
if(hcryp->State == HAL_CRYP_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcryp->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_CRYP_MspInit(hcryp);
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Disable the Peripheral */
__HAL_CRYP_DISABLE();
/*=============================================================*/
/* AES initialization common to all operating modes */
/*=============================================================*/
/* Set the Key size selection */
MODIFY_REG(hcryp->Instance->CR, AES_CR_KEYSIZE, hcryp->Init.KeySize);
/* Set the default CRYP phase when this parameter is not used.
Phase is updated below in case of GCM/GMAC/CMAC(/CCM) setting. */
hcryp->Phase = HAL_CRYP_PHASE_NOT_USED;
/*=============================================================*/
/* Carry on the initialization based on the AES operating mode */
/*=============================================================*/
/* Key derivation */
if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
{
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_ALGOMODE_KEYDERIVATION);
/* Configure the Key registers */
if (CRYP_SetKey(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
}
else
/* Encryption / Decryption (with or without key derivation) / authentication */
{
/* Set data type, operating and chaining modes.
In case of GCM or GMAC, data type is forced to 0b00 */
if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
{
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_MODE|AES_CR_CHMOD, hcryp->Init.OperatingMode|hcryp->Init.ChainingMode);
}
else
{
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE|AES_CR_MODE|AES_CR_CHMOD, hcryp->Init.DataType|hcryp->Init.OperatingMode|hcryp->Init.ChainingMode);
}
/* Specify the encryption/decryption phase in case of Galois counter mode (GCM),
Galois message authentication code (GMAC), cipher message authentication code (CMAC)
or Counter with Cipher Mode (CCM) when applicable */
#if defined(AES_CR_NPBLB)
if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC))
#else
if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC))
#endif
{
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, hcryp->Init.GCMCMACPhase);
hcryp->Phase = HAL_CRYP_PHASE_START;
}
/* Configure the Key registers if no need to bypass this step */
if (hcryp->Init.KeyWriteFlag == CRYP_KEY_WRITE_ENABLE)
{
if (CRYP_SetKey(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
}
/* If applicable, configure the Initialization Vector */
if (hcryp->Init.ChainingMode != CRYP_CHAINMODE_AES_ECB)
{
if (CRYP_SetInitVector(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
}
}
#if defined(AES_CR_NPBLB)
/* Clear NPBLB field */
CLEAR_BIT(hcryp->Instance->CR, AES_CR_NPBLB);
#endif
/* Reset CrypInCount and CrypOutCount */
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
/* Reset ErrorCode field */
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
/* Reset Mode suspension request */
hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Enable the Peripheral */
__HAL_CRYP_ENABLE();
/* Return function status */
return HAL_OK;
}
/**
* @brief DeInitialize the CRYP peripheral.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set the default CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_READY;
/* Reset CrypInCount and CrypOutCount */
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
/* Disable the CRYP Peripheral Clock */
__HAL_CRYP_DISABLE();
/* DeInit the low level hardware: CLOCK, NVIC.*/
HAL_CRYP_MspDeInit(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the CRYP MSP.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_MspInit can be implemented in the user file
*/
}
/**
* @brief DeInitialize CRYP MSP.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_MspDeInit can be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group2 AES processing functions
* @brief Processing functions.
*
@verbatim
==============================================================================
##### AES processing functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Encrypt plaintext using AES algorithm in different chaining modes
(+) Decrypt cyphertext using AES algorithm in different chaining modes
[..] Three processing functions are available:
(+) Polling mode
(+) Interrupt mode
(+) DMA mode
@endverbatim
* @{
*/
/**
* @brief Encrypt pPlainData in AES ECB encryption mode. The cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout);
}
/**
* @brief Encrypt pPlainData in AES CBC encryption mode with key derivation. The cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout);
}
/**
* @brief Encrypt pPlainData in AES CTR encryption mode. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @param Timeout Specify Timeout value
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES(hcryp, pPlainData, Size, pCypherData, Timeout);
}
/**
* @brief Decrypt pCypherData in AES ECB decryption mode with key derivation,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout);
}
/**
* @brief Decrypt pCypherData in AES ECB decryption mode with key derivation,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout);
}
/**
* @brief Decrypt pCypherData in AES CTR decryption mode,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @param Timeout Specify Timeout value
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES(hcryp, pCypherData, Size, pPlainData, Timeout);
}
/**
* @brief Encrypt pPlainData in AES ECB encryption mode using Interrupt,
* the cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData);
}
/**
* @brief Encrypt pPlainData in AES CBC encryption mode using Interrupt,
* the cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData);
}
/**
* @brief Encrypt pPlainData in AES CTR encryption mode using Interrupt,
* the cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_IT(hcryp, pPlainData, Size, pCypherData);
}
/**
* @brief Decrypt pCypherData in AES ECB decryption mode using Interrupt,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer.
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData);
}
/**
* @brief Decrypt pCypherData in AES CBC decryption mode using Interrupt,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData);
}
/**
* @brief Decrypt pCypherData in AES CTR decryption mode using Interrupt,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_IT() API instead (usage recommended).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_IT(hcryp, pCypherData, Size, pPlainData);
}
/**
* @brief Encrypt pPlainData in AES ECB encryption mode using DMA,
* the cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended).
* @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData);
}
/**
* @brief Encrypt pPlainData in AES CBC encryption mode using DMA,
* the cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended).
* @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData);
}
/**
* @brief Encrypt pPlainData in AES CTR encryption mode using DMA,
* the cypher data are available in pCypherData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pCypherData Pointer to the cyphertext buffer.
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended).
* @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_ENCRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_DMA(hcryp, pPlainData, Size, pCypherData);
}
/**
* @brief Decrypt pCypherData in AES ECB decryption mode using DMA,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended).
* @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_ECB;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData);
}
/**
* @brief Decrypt pCypherData in AES CBC decryption mode using DMA,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended).
* @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_KEYDERIVATION_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData);
}
/**
* @brief Decrypt pCypherData in AES CTR decryption mode using DMA,
* the decyphered data are available in pPlainData.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the cyphertext buffer
* @param Size Length of the plaintext buffer in bytes, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer
* @note This API is provided only to maintain compatibility with legacy software. Users should directly
* resort to generic HAL_CRYPEx_AES_DMA() API instead (usage recommended).
* @note pPlainData and pCypherData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
/* Re-initialize AES IP with proper parameters */
if (HAL_CRYP_DeInit(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
hcryp->Init.OperatingMode = CRYP_ALGOMODE_DECRYPT;
hcryp->Init.ChainingMode = CRYP_CHAINMODE_AES_CTR;
hcryp->Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(hcryp) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_CRYPEx_AES_DMA(hcryp, pCypherData, Size, pPlainData);
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group3 Callback functions
* @brief Callback functions.
*
@verbatim
==============================================================================
##### Callback functions #####
==============================================================================
[..] This section provides Interruption and DMA callback functions:
(+) DMA Input data transfer complete
(+) DMA Output data transfer complete
(+) DMA or Interrupt error
@endverbatim
* @{
*/
/**
* @brief CRYP error callback.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_ErrorCallback can be implemented in the user file
*/
}
/**
* @brief Input DMA transfer complete callback.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_InCpltCallback can be implemented in the user file
*/
}
/**
* @brief Output DMA transfer complete callback.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_OutCpltCallback can be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group4 CRYP IRQ handler
* @brief AES IRQ handler.
*
@verbatim
==============================================================================
##### AES IRQ handler management #####
==============================================================================
[..] This section provides AES IRQ handler function.
@endverbatim
* @{
*/
/**
* @brief Handle AES interrupt request.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
{
/* Check if error occurred */
if (__HAL_CRYP_GET_IT_SOURCE(CRYP_IT_ERRIE) != RESET)
{
/* If Write Error occurred */
if (__HAL_CRYP_GET_FLAG(CRYP_IT_WRERR) != RESET)
{
hcryp->ErrorCode |= HAL_CRYP_WRITE_ERROR;
hcryp->State = HAL_CRYP_STATE_ERROR;
}
/* If Read Error occurred */
if (__HAL_CRYP_GET_FLAG(CRYP_IT_RDERR) != RESET)
{
hcryp->ErrorCode |= HAL_CRYP_READ_ERROR;
hcryp->State = HAL_CRYP_STATE_ERROR;
}
/* If an error has been reported */
if (hcryp->State == HAL_CRYP_STATE_ERROR)
{
/* Disable Error and Computation Complete Interrupts */
__HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
/* Clear all Interrupt flags */
__HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR|CRYP_CCF_CLEAR);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
HAL_CRYP_ErrorCallback(hcryp);
return;
}
}
/* Check if computation complete interrupt is enabled
and if the computation complete flag is raised */
if((__HAL_CRYP_GET_FLAG(CRYP_IT_CCF) != RESET) && (__HAL_CRYP_GET_IT_SOURCE(CRYP_IT_CCFIE) != RESET))
{
#if defined(AES_CR_NPBLB)
if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC))
#else
if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
|| (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC))
#endif
{
/* To ensure proper suspension requests management, CCF flag
is reset in CRYP_AES_Auth_IT() according to the current
phase under handling */
CRYP_AES_Auth_IT(hcryp);
}
else
{
/* Clear Computation Complete Flag */
__HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
CRYP_AES_IT(hcryp);
}
}
}
/**
* @}
*/
/** @defgroup CRYP_Exported_Functions_Group5 Peripheral State functions
* @brief Peripheral State functions.
*
@verbatim
==============================================================================
##### Peripheral State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Return the CRYP handle state.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL state
*/
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
{
/* Return CRYP handle state */
return hcryp->State;
}
/**
* @brief Return the CRYP peripheral error.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @note The returned error is a bit-map combination of possible errors
* @retval Error bit-map
*/
uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
{
return hcryp->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup CRYP_Private_Functions
* @{
*/
/**
* @brief Write the Key in KeyRx registers.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
static HAL_StatusTypeDef CRYP_SetKey(CRYP_HandleTypeDef *hcryp)
{
uint32_t keyaddr = 0x0U;
if ((uint32_t)(hcryp->Init.pKey == NULL))
{
return HAL_ERROR;
}
keyaddr = (uint32_t)(hcryp->Init.pKey);
if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B)
{
hcryp->Instance->KEYR7 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR6 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR5 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR4 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
}
hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr));
return HAL_OK;
}
/**
* @brief Write the InitVector/InitCounter in IVRx registers.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
static HAL_StatusTypeDef CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp)
{
uint32_t ivaddr = 0x0U;
#if !defined(AES_CR_NPBLB)
if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
{
hcryp->Instance->IVR3 = 0U;
hcryp->Instance->IVR2 = 0U;
hcryp->Instance->IVR1 = 0U;
hcryp->Instance->IVR0 = 0U;
}
else
#endif
{
if (hcryp->Init.pInitVect == NULL)
{
return HAL_ERROR;
}
ivaddr = (uint32_t)(hcryp->Init.pInitVect);
hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr));
}
return HAL_OK;
}
/**
* @brief Handle CRYP block input/output data handling under interruption.
* @note The function is called under interruption only, once
* interruptions have been enabled by HAL_CRYPEx_AES_IT().
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module.
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
{
uint32_t inputaddr = 0U;
uint32_t outputaddr = 0U;
if(hcryp->State == HAL_CRYP_STATE_BUSY)
{
if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
{
/* Get the output data address */
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the last available output block from the Data Output Register */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
}
else
{
/* Read the derived key from the Key registers */
if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B)
{
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR7);
outputaddr+=4U;
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR6);
outputaddr+=4U;
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR5);
outputaddr+=4U;
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR4);
outputaddr+=4U;
}
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR3);
outputaddr+=4U;
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR2);
outputaddr+=4U;
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR1);
outputaddr+=4U;
*(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR0);
}
/* In case of ciphering or deciphering, check if all output text has been retrieved;
In case of key derivation, stop right there */
if ((hcryp->CrypOutCount == 0U) || (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION))
{
/* Disable Computation Complete Flag and Errors Interrupts */
__HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Call computation complete callback */
HAL_CRYPEx_ComputationCpltCallback(hcryp);
return HAL_OK;
}
/* If suspension flag has been raised, suspend processing */
else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
{
/* reset ModeSuspend */
hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
/* Disable Computation Complete Flag and Errors Interrupts */
__HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_SUSPENDED;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_OK;
}
else /* Process the rest of input data */
{
/* Get the Intput data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment/decrement instance pointer/counter */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the next input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
return HAL_OK;
}
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
#endif /* AES */
#endif /* HAL_CRYP_MODULE_ENABLED */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/