/** | |
* @file | |
* | |
* 6LowPAN output for IPv6. Uses ND tables for link-layer addressing. Fragments packets to 6LowPAN units. | |
* | |
* This implementation aims to conform to IEEE 802.15.4(-2015), RFC 4944 and RFC 6282. | |
* @todo: RFC 6775. | |
*/ | |
/* | |
* Copyright (c) 2015 Inico Technologies Ltd. | |
* All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without modification, | |
* are permitted provided that the following conditions are met: | |
* | |
* 1. Redistributions of source code must retain the above copyright notice, | |
* this list of conditions and the following disclaimer. | |
* 2. Redistributions in binary form must reproduce the above copyright notice, | |
* this list of conditions and the following disclaimer in the documentation | |
* and/or other materials provided with the distribution. | |
* 3. The name of the author may not be used to endorse or promote products | |
* derived from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED | |
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | |
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT | |
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | |
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING | |
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY | |
* OF SUCH DAMAGE. | |
* | |
* This file is part of the lwIP TCP/IP stack. | |
* | |
* Author: Ivan Delamer <delamer@inicotech.com> | |
* | |
* | |
* Please coordinate changes and requests with Ivan Delamer | |
* <delamer@inicotech.com> | |
*/ | |
/** | |
* @defgroup sixlowpan 6LoWPAN (RFC4944) | |
* @ingroup netifs | |
* 6LowPAN netif implementation | |
*/ | |
#include "netif/lowpan6.h" | |
#if LWIP_IPV6 | |
#include "lwip/ip.h" | |
#include "lwip/pbuf.h" | |
#include "lwip/ip_addr.h" | |
#include "lwip/netif.h" | |
#include "lwip/nd6.h" | |
#include "lwip/mem.h" | |
#include "lwip/udp.h" | |
#include "lwip/tcpip.h" | |
#include "lwip/snmp.h" | |
#include "netif/ieee802154.h" | |
#include <string.h> | |
#if LWIP_6LOWPAN_802154_HW_CRC | |
#define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) 0 | |
#else | |
#define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) LWIP_6LOWPAN_CALC_CRC(buf, len) | |
#endif | |
/** This is a helper struct for reassembly of fragments | |
* (IEEE 802.15.4 limits to 127 bytes) | |
*/ | |
struct lowpan6_reass_helper { | |
struct lowpan6_reass_helper *next_packet; | |
struct pbuf *reass; | |
struct pbuf *frags; | |
u8_t timer; | |
struct lowpan6_link_addr sender_addr; | |
u16_t datagram_size; | |
u16_t datagram_tag; | |
}; | |
/** This struct keeps track of per-netif state */ | |
struct lowpan6_ieee802154_data { | |
/** fragment reassembly list */ | |
struct lowpan6_reass_helper *reass_list; | |
#if LWIP_6LOWPAN_NUM_CONTEXTS > 0 | |
/** address context for compression */ | |
ip6_addr_t lowpan6_context[LWIP_6LOWPAN_NUM_CONTEXTS]; | |
#endif | |
/** Datagram Tag for fragmentation */ | |
u16_t tx_datagram_tag; | |
/** local PAN ID for IEEE 802.15.4 header */ | |
u16_t ieee_802154_pan_id; | |
/** Sequence Number for IEEE 802.15.4 transmission */ | |
u8_t tx_frame_seq_num; | |
}; | |
/* Maximum frame size is 127 bytes minus CRC size */ | |
#define LOWPAN6_MAX_PAYLOAD (127 - 2) | |
/** Currently, this state is global, since there's only one 6LoWPAN netif */ | |
static struct lowpan6_ieee802154_data lowpan6_data; | |
#if LWIP_6LOWPAN_NUM_CONTEXTS > 0 | |
#define LWIP_6LOWPAN_CONTEXTS(netif) lowpan6_data.lowpan6_context | |
#else | |
#define LWIP_6LOWPAN_CONTEXTS(netif) NULL | |
#endif | |
static const struct lowpan6_link_addr ieee_802154_broadcast = {2, {0xff, 0xff}}; | |
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS | |
static struct lowpan6_link_addr short_mac_addr = {2, {0, 0}}; | |
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ | |
/* IEEE 802.15.4 specific functions: */ | |
/** Write the IEEE 802.15.4 header that encapsulates the 6LoWPAN frame. | |
* Src and dst PAN IDs are filled with the ID set by @ref lowpan6_set_pan_id. | |
* | |
* Since the length is variable: | |
* @returns the header length | |
*/ | |
static u8_t | |
lowpan6_write_iee802154_header(struct ieee_802154_hdr *hdr, const struct lowpan6_link_addr *src, | |
const struct lowpan6_link_addr *dst) | |
{ | |
u8_t ieee_header_len; | |
u8_t *buffer; | |
u8_t i; | |
u16_t fc; | |
fc = IEEE_802154_FC_FT_DATA; /* send data packet (2003 frame version) */ | |
fc |= IEEE_802154_FC_PANID_COMPR; /* set PAN ID compression, for now src and dst PANs are equal */ | |
if (dst != &ieee_802154_broadcast) { | |
fc |= IEEE_802154_FC_ACK_REQ; /* data packet, no broadcast: ack required. */ | |
} | |
if (dst->addr_len == 2) { | |
fc |= IEEE_802154_FC_DST_ADDR_MODE_SHORT; | |
} else { | |
LWIP_ASSERT("invalid dst address length", dst->addr_len == 8); | |
fc |= IEEE_802154_FC_DST_ADDR_MODE_EXT; | |
} | |
if (src->addr_len == 2) { | |
fc |= IEEE_802154_FC_SRC_ADDR_MODE_SHORT; | |
} else { | |
LWIP_ASSERT("invalid src address length", src->addr_len == 8); | |
fc |= IEEE_802154_FC_SRC_ADDR_MODE_EXT; | |
} | |
hdr->frame_control = fc; | |
hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; | |
hdr->destination_pan_id = lowpan6_data.ieee_802154_pan_id; /* pan id */ | |
buffer = (u8_t *)hdr; | |
ieee_header_len = 5; | |
i = dst->addr_len; | |
/* reverse memcpy of dst addr */ | |
while (i-- > 0) { | |
buffer[ieee_header_len++] = dst->addr[i]; | |
} | |
/* Source PAN ID skipped due to PAN ID Compression */ | |
i = src->addr_len; | |
/* reverse memcpy of src addr */ | |
while (i-- > 0) { | |
buffer[ieee_header_len++] = src->addr[i]; | |
} | |
return ieee_header_len; | |
} | |
/** Parse the IEEE 802.15.4 header from a pbuf. | |
* If successful, the header is hidden from the pbuf. | |
* | |
* PAN IDs and seuqence number are not checked | |
* | |
* @param p input pbuf, p->payload pointing at the IEEE 802.15.4 header | |
* @param src pointer to source address filled from the header | |
* @param dest pointer to destination address filled from the header | |
* @returns ERR_OK if successful | |
*/ | |
static err_t | |
lowpan6_parse_iee802154_header(struct pbuf *p, struct lowpan6_link_addr *src, | |
struct lowpan6_link_addr *dest) | |
{ | |
u8_t *puc; | |
s8_t i; | |
u16_t frame_control, addr_mode; | |
u16_t datagram_offset; | |
/* Parse IEEE 802.15.4 header */ | |
puc = (u8_t *)p->payload; | |
frame_control = puc[0] | (puc[1] << 8); | |
datagram_offset = 2; | |
if (frame_control & IEEE_802154_FC_SEQNO_SUPPR) { | |
if (IEEE_802154_FC_FRAME_VERSION_GET(frame_control) <= 1) { | |
/* sequence number suppressed, this is not valid for versions 0/1 */ | |
return ERR_VAL; | |
} | |
} else { | |
datagram_offset++; | |
} | |
datagram_offset += 2; /* Skip destination PAN ID */ | |
addr_mode = frame_control & IEEE_802154_FC_DST_ADDR_MODE_MASK; | |
if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_EXT) { | |
/* extended address (64 bit) */ | |
dest->addr_len = 8; | |
/* reverse memcpy: */ | |
for (i = 0; i < 8; i++) { | |
dest->addr[i] = puc[datagram_offset + 7 - i]; | |
} | |
datagram_offset += 8; | |
} else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { | |
/* short address (16 bit) */ | |
dest->addr_len = 2; | |
/* reverse memcpy: */ | |
dest->addr[0] = puc[datagram_offset + 1]; | |
dest->addr[1] = puc[datagram_offset]; | |
datagram_offset += 2; | |
} else { | |
/* unsupported address mode (do we need "no address"?) */ | |
return ERR_VAL; | |
} | |
if (!(frame_control & IEEE_802154_FC_PANID_COMPR)) { | |
/* No PAN ID compression, skip source PAN ID */ | |
datagram_offset += 2; | |
} | |
addr_mode = frame_control & IEEE_802154_FC_SRC_ADDR_MODE_MASK; | |
if (addr_mode == IEEE_802154_FC_SRC_ADDR_MODE_EXT) { | |
/* extended address (64 bit) */ | |
src->addr_len = 8; | |
/* reverse memcpy: */ | |
for (i = 0; i < 8; i++) { | |
src->addr[i] = puc[datagram_offset + 7 - i]; | |
} | |
datagram_offset += 8; | |
} else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { | |
/* short address (16 bit) */ | |
src->addr_len = 2; | |
src->addr[0] = puc[datagram_offset + 1]; | |
src->addr[1] = puc[datagram_offset]; | |
datagram_offset += 2; | |
} else { | |
/* unsupported address mode (do we need "no address"?) */ | |
return ERR_VAL; | |
} | |
/* hide IEEE802.15.4 header. */ | |
if (pbuf_remove_header(p, datagram_offset)) { | |
return ERR_VAL; | |
} | |
return ERR_OK; | |
} | |
/** Calculate the 16-bit CRC as required by IEEE 802.15.4 */ | |
u16_t | |
lowpan6_calc_crc(const void* buf, u16_t len) | |
{ | |
#define CCITT_POLY_16 0x8408U | |
u16_t i; | |
u8_t b; | |
u16_t crc = 0; | |
const u8_t* p = (const u8_t*)buf; | |
for (i = 0; i < len; i++) { | |
u8_t data = *p; | |
for (b = 0U; b < 8U; b++) { | |
if (((data ^ crc) & 1) != 0) { | |
crc = (u16_t)((crc >> 1) ^ CCITT_POLY_16); | |
} else { | |
crc = (u16_t)(crc >> 1); | |
} | |
data = (u8_t)(data >> 1); | |
} | |
p++; | |
} | |
return crc; | |
} | |
/* Fragmentation specific functions: */ | |
static void | |
free_reass_datagram(struct lowpan6_reass_helper *lrh) | |
{ | |
if (lrh->reass) { | |
pbuf_free(lrh->reass); | |
} | |
if (lrh->frags) { | |
pbuf_free(lrh->frags); | |
} | |
mem_free(lrh); | |
} | |
/** | |
* Removes a datagram from the reassembly queue. | |
**/ | |
static void | |
dequeue_datagram(struct lowpan6_reass_helper *lrh, struct lowpan6_reass_helper *prev) | |
{ | |
if (lowpan6_data.reass_list == lrh) { | |
lowpan6_data.reass_list = lowpan6_data.reass_list->next_packet; | |
} else { | |
/* it wasn't the first, so it must have a valid 'prev' */ | |
LWIP_ASSERT("sanity check linked list", prev != NULL); | |
prev->next_packet = lrh->next_packet; | |
} | |
} | |
/** | |
* Periodic timer for 6LowPAN functions: | |
* | |
* - Remove incomplete/old packets | |
*/ | |
void | |
lowpan6_tmr(void) | |
{ | |
struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; | |
lrh = lowpan6_data.reass_list; | |
while (lrh != NULL) { | |
lrh_next = lrh->next_packet; | |
if ((--lrh->timer) == 0) { | |
dequeue_datagram(lrh, lrh_prev); | |
free_reass_datagram(lrh); | |
} else { | |
lrh_prev = lrh; | |
} | |
lrh = lrh_next; | |
} | |
} | |
/* | |
* Encapsulates data into IEEE 802.15.4 frames. | |
* Fragments an IPv6 datagram into 6LowPAN units, which fit into IEEE 802.15.4 frames. | |
* If configured, will compress IPv6 and or UDP headers. | |
* */ | |
static err_t | |
lowpan6_frag(struct netif *netif, struct pbuf *p, const struct lowpan6_link_addr *src, const struct lowpan6_link_addr *dst) | |
{ | |
struct pbuf *p_frag; | |
u16_t frag_len, remaining_len, max_data_len; | |
u8_t *buffer; | |
u8_t ieee_header_len; | |
u8_t lowpan6_header_len; | |
u8_t hidden_header_len; | |
u16_t crc; | |
u16_t datagram_offset; | |
err_t err = ERR_IF; | |
LWIP_ASSERT("lowpan6_frag: netif->linkoutput not set", netif->linkoutput != NULL); | |
/* We'll use a dedicated pbuf for building 6LowPAN fragments. */ | |
p_frag = pbuf_alloc(PBUF_RAW, 127, PBUF_RAM); | |
if (p_frag == NULL) { | |
MIB2_STATS_NETIF_INC(netif, ifoutdiscards); | |
return ERR_MEM; | |
} | |
LWIP_ASSERT("this needs a pbuf in one piece", p_frag->len == p_frag->tot_len); | |
/* Write IEEE 802.15.4 header. */ | |
buffer = (u8_t *)p_frag->payload; | |
ieee_header_len = lowpan6_write_iee802154_header((struct ieee_802154_hdr *)buffer, src, dst); | |
LWIP_ASSERT("ieee_header_len < p_frag->len", ieee_header_len < p_frag->len); | |
#if LWIP_6LOWPAN_IPHC | |
/* Perform 6LowPAN IPv6 header compression according to RFC 6282 */ | |
/* do the header compression (this does NOT copy any non-compressed data) */ | |
err = lowpan6_compress_headers(netif, (u8_t *)p->payload, p->len, | |
&buffer[ieee_header_len], p_frag->len - ieee_header_len, &lowpan6_header_len, | |
&hidden_header_len, LWIP_6LOWPAN_CONTEXTS(netif), src, dst); | |
if (err != ERR_OK) { | |
MIB2_STATS_NETIF_INC(netif, ifoutdiscards); | |
pbuf_free(p_frag); | |
return err; | |
} | |
pbuf_remove_header(p, hidden_header_len); | |
#else /* LWIP_6LOWPAN_IPHC */ | |
/* Send uncompressed IPv6 header with appropriate dispatch byte. */ | |
lowpan6_header_len = 1; | |
buffer[ieee_header_len] = 0x41; /* IPv6 dispatch */ | |
#endif /* LWIP_6LOWPAN_IPHC */ | |
/* Calculate remaining packet length */ | |
remaining_len = p->tot_len; | |
if (remaining_len > 0x7FF) { | |
MIB2_STATS_NETIF_INC(netif, ifoutdiscards); | |
/* datagram_size must fit into 11 bit */ | |
pbuf_free(p_frag); | |
return ERR_VAL; | |
} | |
/* Fragment, or 1 packet? */ | |
max_data_len = LOWPAN6_MAX_PAYLOAD - ieee_header_len - lowpan6_header_len; | |
if (remaining_len > max_data_len) { | |
u16_t data_len; | |
/* We must move the 6LowPAN header to make room for the FRAG header. */ | |
memmove(&buffer[ieee_header_len + 4], &buffer[ieee_header_len], lowpan6_header_len); | |
/* Now we need to fragment the packet. FRAG1 header first */ | |
buffer[ieee_header_len] = 0xc0 | (((p->tot_len + hidden_header_len) >> 8) & 0x7); | |
buffer[ieee_header_len + 1] = (p->tot_len + hidden_header_len) & 0xff; | |
lowpan6_data.tx_datagram_tag++; | |
buffer[ieee_header_len + 2] = (lowpan6_data.tx_datagram_tag >> 8) & 0xff; | |
buffer[ieee_header_len + 3] = lowpan6_data.tx_datagram_tag & 0xff; | |
/* Fragment follows. */ | |
data_len = (max_data_len - 4) & 0xf8; | |
frag_len = data_len + lowpan6_header_len; | |
pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len + 4, frag_len - lowpan6_header_len, 0); | |
remaining_len -= frag_len - lowpan6_header_len; | |
/* datagram offset holds the offset before compression */ | |
datagram_offset = frag_len - lowpan6_header_len + hidden_header_len; | |
LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); | |
/* Calculate frame length */ | |
p_frag->len = p_frag->tot_len = ieee_header_len + 4 + frag_len + 2; /* add 2 bytes for crc*/ | |
/* 2 bytes CRC */ | |
crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); | |
pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); | |
/* send the packet */ | |
MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); | |
LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); | |
err = netif->linkoutput(netif, p_frag); | |
while ((remaining_len > 0) && (err == ERR_OK)) { | |
struct ieee_802154_hdr *hdr = (struct ieee_802154_hdr *)buffer; | |
/* new frame, new seq num for ACK */ | |
hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; | |
buffer[ieee_header_len] |= 0x20; /* Change FRAG1 to FRAGN */ | |
LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); | |
buffer[ieee_header_len + 4] = (u8_t)(datagram_offset >> 3); /* datagram offset in FRAGN header (datagram_offset is max. 11 bit) */ | |
frag_len = (127 - ieee_header_len - 5 - 2) & 0xf8; | |
if (frag_len > remaining_len) { | |
frag_len = remaining_len; | |
} | |
pbuf_copy_partial(p, buffer + ieee_header_len + 5, frag_len, p->tot_len - remaining_len); | |
remaining_len -= frag_len; | |
datagram_offset += frag_len; | |
/* Calculate frame length */ | |
p_frag->len = p_frag->tot_len = frag_len + 5 + ieee_header_len + 2; | |
/* 2 bytes CRC */ | |
crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); | |
pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); | |
/* send the packet */ | |
MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); | |
LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); | |
err = netif->linkoutput(netif, p_frag); | |
} | |
} else { | |
/* It fits in one frame. */ | |
frag_len = remaining_len; | |
/* Copy IPv6 packet */ | |
pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len, frag_len, 0); | |
remaining_len = 0; | |
/* Calculate frame length */ | |
p_frag->len = p_frag->tot_len = frag_len + lowpan6_header_len + ieee_header_len + 2; | |
LWIP_ASSERT("", p_frag->len <= 127); | |
/* 2 bytes CRC */ | |
crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); | |
pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); | |
/* send the packet */ | |
MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); | |
LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); | |
err = netif->linkoutput(netif, p_frag); | |
} | |
pbuf_free(p_frag); | |
return err; | |
} | |
/** | |
* @ingroup sixlowpan | |
* Set context | |
*/ | |
err_t | |
lowpan6_set_context(u8_t idx, const ip6_addr_t *context) | |
{ | |
#if LWIP_6LOWPAN_NUM_CONTEXTS > 0 | |
if (idx >= LWIP_6LOWPAN_NUM_CONTEXTS) { | |
return ERR_ARG; | |
} | |
IP6_ADDR_ZONECHECK(context); | |
ip6_addr_set(&lowpan6_data.lowpan6_context[idx], context); | |
return ERR_OK; | |
#else | |
LWIP_UNUSED_ARG(idx); | |
LWIP_UNUSED_ARG(context); | |
return ERR_ARG; | |
#endif | |
} | |
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS | |
/** | |
* @ingroup sixlowpan | |
* Set short address | |
*/ | |
err_t | |
lowpan6_set_short_addr(u8_t addr_high, u8_t addr_low) | |
{ | |
short_mac_addr.addr[0] = addr_high; | |
short_mac_addr.addr[1] = addr_low; | |
return ERR_OK; | |
} | |
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ | |
/* Create IEEE 802.15.4 address from netif address */ | |
static err_t | |
lowpan6_hwaddr_to_addr(struct netif *netif, struct lowpan6_link_addr *addr) | |
{ | |
addr->addr_len = 8; | |
if (netif->hwaddr_len == 8) { | |
LWIP_ERROR("NETIF_MAX_HWADDR_LEN >= 8 required", sizeof(netif->hwaddr) >= 8, return ERR_VAL;); | |
SMEMCPY(addr->addr, netif->hwaddr, 8); | |
} else if (netif->hwaddr_len == 6) { | |
/* Copy from MAC-48 */ | |
SMEMCPY(addr->addr, netif->hwaddr, 3); | |
addr->addr[3] = addr->addr[4] = 0xff; | |
SMEMCPY(&addr->addr[5], &netif->hwaddr[3], 3); | |
} else { | |
/* Invalid address length, don't know how to convert this */ | |
return ERR_VAL; | |
} | |
return ERR_OK; | |
} | |
/** | |
* @ingroup sixlowpan | |
* Resolve and fill-in IEEE 802.15.4 address header for outgoing IPv6 packet. | |
* | |
* Perform Header Compression and fragment if necessary. | |
* | |
* @param netif The lwIP network interface which the IP packet will be sent on. | |
* @param q The pbuf(s) containing the IP packet to be sent. | |
* @param ip6addr The IP address of the packet destination. | |
* | |
* @return err_t | |
*/ | |
err_t | |
lowpan6_output(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr) | |
{ | |
err_t result; | |
const u8_t *hwaddr; | |
struct lowpan6_link_addr src, dest; | |
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS | |
ip6_addr_t ip6_src; | |
struct ip6_hdr *ip6_hdr; | |
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ | |
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS | |
/* Check if we can compress source address (use aligned copy) */ | |
ip6_hdr = (struct ip6_hdr *)q->payload; | |
ip6_addr_copy_from_packed(ip6_src, ip6_hdr->src); | |
ip6_addr_assign_zone(&ip6_src, IP6_UNICAST, netif); | |
if (lowpan6_get_address_mode(&ip6_src, &short_mac_addr) == 3) { | |
src.addr_len = 2; | |
src.addr[0] = short_mac_addr.addr[0]; | |
src.addr[1] = short_mac_addr.addr[1]; | |
} else | |
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ | |
{ | |
result = lowpan6_hwaddr_to_addr(netif, &src); | |
if (result != ERR_OK) { | |
MIB2_STATS_NETIF_INC(netif, ifoutdiscards); | |
return result; | |
} | |
} | |
/* multicast destination IP address? */ | |
if (ip6_addr_ismulticast(ip6addr)) { | |
MIB2_STATS_NETIF_INC(netif, ifoutnucastpkts); | |
/* We need to send to the broadcast address.*/ | |
return lowpan6_frag(netif, q, &src, &ieee_802154_broadcast); | |
} | |
/* We have a unicast destination IP address */ | |
/* @todo anycast? */ | |
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS | |
if (src.addr_len == 2) { | |
/* If source address was compressable to short_mac_addr, and dest has same subnet and | |
* is also compressable to 2-bytes, assume we can infer dest as a short address too. */ | |
dest.addr_len = 2; | |
dest.addr[0] = ((u8_t *)q->payload)[38]; | |
dest.addr[1] = ((u8_t *)q->payload)[39]; | |
if ((src.addr_len == 2) && (ip6_addr_netcmp_zoneless(&ip6_hdr->src, &ip6_hdr->dest)) && | |
(lowpan6_get_address_mode(ip6addr, &dest) == 3)) { | |
MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); | |
return lowpan6_frag(netif, q, &src, &dest); | |
} | |
} | |
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ | |
/* Ask ND6 what to do with the packet. */ | |
result = nd6_get_next_hop_addr_or_queue(netif, q, ip6addr, &hwaddr); | |
if (result != ERR_OK) { | |
MIB2_STATS_NETIF_INC(netif, ifoutdiscards); | |
return result; | |
} | |
/* If no hardware address is returned, nd6 has queued the packet for later. */ | |
if (hwaddr == NULL) { | |
return ERR_OK; | |
} | |
/* Send out the packet using the returned hardware address. */ | |
dest.addr_len = netif->hwaddr_len; | |
/* XXX: Inferring the length of the source address from the destination address | |
* is not correct for IEEE 802.15.4, but currently we don't get this information | |
* from the neighbor cache */ | |
SMEMCPY(dest.addr, hwaddr, netif->hwaddr_len); | |
MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); | |
return lowpan6_frag(netif, q, &src, &dest); | |
} | |
/** | |
* @ingroup sixlowpan | |
* NETIF input function: don't free the input pbuf when returning != ERR_OK! | |
*/ | |
err_t | |
lowpan6_input(struct pbuf *p, struct netif *netif) | |
{ | |
u8_t *puc, b; | |
s8_t i; | |
struct lowpan6_link_addr src, dest; | |
u16_t datagram_size = 0; | |
u16_t datagram_offset, datagram_tag; | |
struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; | |
if (p == NULL) { | |
return ERR_OK; | |
} | |
MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len); | |
if (p->len != p->tot_len) { | |
/* for now, this needs a pbuf in one piece */ | |
goto lowpan6_input_discard; | |
} | |
if (lowpan6_parse_iee802154_header(p, &src, &dest) != ERR_OK) { | |
goto lowpan6_input_discard; | |
} | |
/* Check dispatch. */ | |
puc = (u8_t *)p->payload; | |
b = *puc; | |
if ((b & 0xf8) == 0xc0) { | |
/* FRAG1 dispatch. add this packet to reassembly list. */ | |
datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; | |
datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; | |
/* check for duplicate */ | |
lrh = lowpan6_data.reass_list; | |
while (lrh != NULL) { | |
uint8_t discard = 0; | |
lrh_next = lrh->next_packet; | |
if ((lrh->sender_addr.addr_len == src.addr_len) && | |
(memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0)) { | |
/* address match with packet in reassembly. */ | |
if ((datagram_tag == lrh->datagram_tag) && (datagram_size == lrh->datagram_size)) { | |
/* duplicate fragment. */ | |
goto lowpan6_input_discard; | |
} else { | |
/* We are receiving the start of a new datagram. Discard old one (incomplete). */ | |
discard = 1; | |
} | |
} | |
if (discard) { | |
dequeue_datagram(lrh, lrh_prev); | |
free_reass_datagram(lrh); | |
} else { | |
lrh_prev = lrh; | |
} | |
/* Check next datagram in queue. */ | |
lrh = lrh_next; | |
} | |
pbuf_remove_header(p, 4); /* hide frag1 dispatch */ | |
lrh = (struct lowpan6_reass_helper *) mem_malloc(sizeof(struct lowpan6_reass_helper)); | |
if (lrh == NULL) { | |
goto lowpan6_input_discard; | |
} | |
lrh->sender_addr.addr_len = src.addr_len; | |
for (i = 0; i < src.addr_len; i++) { | |
lrh->sender_addr.addr[i] = src.addr[i]; | |
} | |
lrh->datagram_size = datagram_size; | |
lrh->datagram_tag = datagram_tag; | |
lrh->frags = NULL; | |
if (*(u8_t *)p->payload == 0x41) { | |
/* This is a complete IPv6 packet, just skip dispatch byte. */ | |
pbuf_remove_header(p, 1); /* hide dispatch byte. */ | |
lrh->reass = p; | |
} else if ((*(u8_t *)p->payload & 0xe0 ) == 0x60) { | |
lrh->reass = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); | |
if (lrh->reass == NULL) { | |
/* decompression failed */ | |
mem_free(lrh); | |
goto lowpan6_input_discard; | |
} | |
} | |
/* TODO: handle the case where we already have FRAGN received */ | |
lrh->next_packet = lowpan6_data.reass_list; | |
lrh->timer = 2; | |
lowpan6_data.reass_list = lrh; | |
return ERR_OK; | |
} else if ((b & 0xf8) == 0xe0) { | |
/* FRAGN dispatch, find packet being reassembled. */ | |
datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; | |
datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; | |
datagram_offset = (u16_t)puc[4] << 3; | |
pbuf_remove_header(p, 4); /* hide frag1 dispatch but keep datagram offset for reassembly */ | |
for (lrh = lowpan6_data.reass_list; lrh != NULL; lrh_prev = lrh, lrh = lrh->next_packet) { | |
if ((lrh->sender_addr.addr_len == src.addr_len) && | |
(memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0) && | |
(datagram_tag == lrh->datagram_tag) && | |
(datagram_size == lrh->datagram_size)) { | |
break; | |
} | |
} | |
if (lrh == NULL) { | |
/* rogue fragment */ | |
goto lowpan6_input_discard; | |
} | |
/* Insert new pbuf into list of fragments. Each fragment is a pbuf, | |
this only works for unchained pbufs. */ | |
LWIP_ASSERT("p->next == NULL", p->next == NULL); | |
if (lrh->reass != NULL) { | |
/* FRAG1 already received, check this offset against first len */ | |
if (datagram_offset < lrh->reass->len) { | |
/* fragment overlap, discard old fragments */ | |
dequeue_datagram(lrh, lrh_prev); | |
free_reass_datagram(lrh); | |
goto lowpan6_input_discard; | |
} | |
} | |
if (lrh->frags == NULL) { | |
/* first FRAGN */ | |
lrh->frags = p; | |
} else { | |
/* find the correct place to insert */ | |
struct pbuf *q, *last; | |
u16_t new_frag_len = p->len - 1; /* p->len includes datagram_offset byte */ | |
for (q = lrh->frags, last = NULL; q != NULL; last = q, q = q->next) { | |
u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; | |
u16_t q_frag_len = q->len - 1; | |
if (datagram_offset < q_datagram_offset) { | |
if (datagram_offset + new_frag_len > q_datagram_offset) { | |
/* overlap, discard old fragments */ | |
dequeue_datagram(lrh, lrh_prev); | |
free_reass_datagram(lrh); | |
goto lowpan6_input_discard; | |
} | |
/* insert here */ | |
break; | |
} else if (datagram_offset == q_datagram_offset) { | |
if (q_frag_len != new_frag_len) { | |
/* fragment mismatch, discard old fragments */ | |
dequeue_datagram(lrh, lrh_prev); | |
free_reass_datagram(lrh); | |
goto lowpan6_input_discard; | |
} | |
/* duplicate, ignore */ | |
pbuf_free(p); | |
return ERR_OK; | |
} | |
} | |
/* insert fragment */ | |
if (last == NULL) { | |
lrh->frags = p; | |
} else { | |
last->next = p; | |
p->next = q; | |
} | |
} | |
/* check if all fragments were received */ | |
if (lrh->reass) { | |
u16_t offset = lrh->reass->len; | |
struct pbuf *q; | |
for (q = lrh->frags; q != NULL; q = q->next) { | |
u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; | |
if (q_datagram_offset != offset) { | |
/* not complete, wait for more fragments */ | |
return ERR_OK; | |
} | |
offset += q->len - 1; | |
} | |
if (offset == datagram_size) { | |
/* all fragments received, combine pbufs */ | |
u16_t datagram_left = datagram_size - lrh->reass->len; | |
for (q = lrh->frags; q != NULL; q = q->next) { | |
/* hide datagram_offset byte now */ | |
pbuf_remove_header(q, 1); | |
q->tot_len = datagram_left; | |
datagram_left -= q->len; | |
} | |
LWIP_ASSERT("datagram_left == 0", datagram_left == 0); | |
q = lrh->reass; | |
q->tot_len = datagram_size; | |
q->next = lrh->frags; | |
lrh->frags = NULL; | |
lrh->reass = NULL; | |
dequeue_datagram(lrh, lrh_prev); | |
mem_free(lrh); | |
/* @todo: distinguish unicast/multicast */ | |
MIB2_STATS_NETIF_INC(netif, ifinucastpkts); | |
return ip6_input(q, netif); | |
} | |
} | |
/* pbuf enqueued, waiting for more fragments */ | |
return ERR_OK; | |
} else { | |
if (b == 0x41) { | |
/* This is a complete IPv6 packet, just skip dispatch byte. */ | |
pbuf_remove_header(p, 1); /* hide dispatch byte. */ | |
} else if ((b & 0xe0 ) == 0x60) { | |
/* IPv6 headers are compressed using IPHC. */ | |
p = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); | |
if (p == NULL) { | |
MIB2_STATS_NETIF_INC(netif, ifindiscards); | |
return ERR_OK; | |
} | |
} else { | |
goto lowpan6_input_discard; | |
} | |
/* @todo: distinguish unicast/multicast */ | |
MIB2_STATS_NETIF_INC(netif, ifinucastpkts); | |
return ip6_input(p, netif); | |
} | |
lowpan6_input_discard: | |
MIB2_STATS_NETIF_INC(netif, ifindiscards); | |
pbuf_free(p); | |
/* always return ERR_OK here to prevent the caller freeing the pbuf */ | |
return ERR_OK; | |
} | |
/** | |
* @ingroup sixlowpan | |
*/ | |
err_t | |
lowpan6_if_init(struct netif *netif) | |
{ | |
netif->name[0] = 'L'; | |
netif->name[1] = '6'; | |
netif->output_ip6 = lowpan6_output; | |
MIB2_INIT_NETIF(netif, snmp_ifType_other, 0); | |
/* maximum transfer unit */ | |
netif->mtu = 1280; | |
/* broadcast capability */ | |
netif->flags = NETIF_FLAG_BROADCAST /* | NETIF_FLAG_LOWPAN6 */; | |
return ERR_OK; | |
} | |
/** | |
* @ingroup sixlowpan | |
* Set PAN ID | |
*/ | |
err_t | |
lowpan6_set_pan_id(u16_t pan_id) | |
{ | |
lowpan6_data.ieee_802154_pan_id = pan_id; | |
return ERR_OK; | |
} | |
#if !NO_SYS | |
/** | |
* @ingroup sixlowpan | |
* Pass a received packet to tcpip_thread for input processing | |
* | |
* @param p the received packet, p->payload pointing to the | |
* IEEE 802.15.4 header. | |
* @param inp the network interface on which the packet was received | |
*/ | |
err_t | |
tcpip_6lowpan_input(struct pbuf *p, struct netif *inp) | |
{ | |
return tcpip_inpkt(p, inp, lowpan6_input); | |
} | |
#endif /* !NO_SYS */ | |
#endif /* LWIP_IPV6 */ |