| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import mxnet as mx |
| import numpy as np |
| |
| # random seed for reproduction |
| SEED = 12345 |
| |
| |
| def define_qfunc(obs, act): |
| |
| net = mx.symbol.FullyConnected( |
| data=obs, |
| name="qfunc_fc1", |
| num_hidden=32) |
| net = mx.symbol.Activation( |
| data=net, |
| name="qfunc_relu1", |
| act_type="relu") |
| net = mx.symbol.FullyConnected( |
| data=net, |
| name="qfunc_fc2", |
| num_hidden=32) |
| net = mx.symbol.Activation( |
| data=net, |
| name="qfunc_relu2", |
| act_type="relu") |
| net = mx.symbol.Concat(net, act, name="qunfc_concat") |
| net = mx.symbol.FullyConnected( |
| data=net, |
| name="qfunc_fc3", |
| num_hidden=32) |
| net = mx.symbol.Activation( |
| data=net, |
| name="qfunc_relu3", |
| act_type="relu") |
| qval = mx.symbol.FullyConnected( |
| data=net, |
| name="qfunc_qval", |
| num_hidden=1) |
| |
| return qval |
| |
| |
| def define_policy(obs, action_dim): |
| |
| net = mx.symbol.FullyConnected( |
| data=obs, |
| name="policy_fc1", |
| num_hidden=32) |
| net = mx.symbol.Activation( |
| data=net, |
| name="policy_relu1", |
| act_type="relu") |
| net = mx.symbol.FullyConnected( |
| data=net, |
| name="policy_fc2", |
| num_hidden=32) |
| net = mx.symbol.Activation( |
| data=net, |
| name="policy_relu2", |
| act_type="relu") |
| net = mx.symbol.FullyConnected( |
| data=net, |
| name='policy_fc3', |
| num_hidden=action_dim) |
| action = mx.symbol.Activation( |
| data=net, |
| name="act", |
| act_type="tanh") |
| |
| return action |
| |
| |
| def discount_return(x, discount): |
| |
| return np.sum(x * (discount ** np.arange(len(x)))) |
| |
| |
| def rollout(env, agent, max_path_length=np.inf): |
| |
| reward = [] |
| o = env.reset() |
| # agent.reset() |
| path_length = 0 |
| while path_length < max_path_length: |
| o = o.reshape((1, -1)) |
| a = agent.get_action(o) |
| next_o, r, d, _ = env.step(a) |
| reward.append(r) |
| path_length += 1 |
| if d: |
| break |
| o = next_o |
| |
| return reward |
| |
| |
| def sample_rewards(env, policy, eval_samples, max_path_length=np.inf): |
| |
| rewards = [] |
| for _ in range(eval_samples): |
| rewards.append(rollout(env, policy, max_path_length)) |
| |
| return rewards |
| |
| |
| |
| |