blob: e1e696d7fc53ffdb963878b85594c2ac72f7b770 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file softmax.cc
* \brief CPU Implementation of softmax
*/
#include "./softmax-inl.h"
#include "../tensor/elemwise_unary_op.h"
#include "../tensor/elemwise_binary_op.h"
#include "../operator_common.h"
#if MXNET_USE_ONEDNN == 1
#include "operator/nn/dnnl/dnnl_base-inl.h"
#include "operator/nn/dnnl/dnnl_softmax-inl.h"
#endif
namespace mxnet {
namespace op {
DMLC_REGISTER_PARAMETER(SoftmaxParam);
#if MXNET_USE_ONEDNN == 1
static void SoftmaxComputeExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed);
if (SupportDNNLSoftmax(param, inputs[0])) {
DNNL_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
DNNLRun(DNNLSoftmaxForward, attrs, ctx, inputs[0], req[0], outputs[0]);
auto fn = SoftmaxCompute<cpu, mxnet_op::softmax_fwd>;
DNNL_OPCHECK_RUN(fn, attrs, ctx, inputs, req, outputs);
return;
}
FallBackCompute(SoftmaxCompute<cpu, mxnet_op::softmax_fwd>, attrs, ctx, inputs, req, outputs);
}
static void SoftmaxGradComputeExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed);
if (SupportDNNLSoftmax(param, inputs[1])) {
DNNL_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
DNNLRun(DNNLSoftmaxBackward, attrs, ctx, inputs, req, outputs);
auto fn = SoftmaxGradCompute<cpu, op::mshadow_op::mul, mxnet_op::softmax_bwd>;
DNNL_OPCHECK_RUN(fn, attrs, ctx, inputs, req, outputs);
return;
}
FallBackCompute(SoftmaxGradCompute<cpu, op::mshadow_op::mul, mxnet_op::softmax_bwd>,
attrs,
ctx,
inputs,
req,
outputs);
}
inline static bool SoftmaxStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed);
CHECK_EQ(in_attrs->size(), (param.use_length.value()) ? 2U : 1U);
CHECK_EQ(out_attrs->size(), 1U);
if (param.use_length.value()) {
auto& out_stype = out_attrs->at(0);
return storage_type_assign(&out_stype, kDefaultStorage, dispatch_mode, DispatchMode::kFCompute);
}
return DNNLStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs, out_attrs);
}
inline static bool SoftmaxGradStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
bool support = true;
if (softmax_use_length(attrs) || softmax_has_dtype_override(attrs)) {
support = false;
}
CHECK_EQ(in_attrs->size(), SoftmaxGradOpNumInputs(attrs));
CHECK_EQ(out_attrs->size(), softmax_use_length(attrs) ? 2U : 1U);
return DNNLStorageType(attrs, dev_mask, support, dispatch_mode, in_attrs, out_attrs);
}
#endif
NNVM_REGISTER_OP(softmax)
.add_alias("_npx_softmax")
.describe(R"code(Applies the softmax function.
The resulting array contains elements in the range (0,1) and the elements along the given axis sum up to 1.
.. math::
softmax(\mathbf{z/t})_j = \frac{e^{z_j/t}}{\sum_{k=1}^K e^{z_k/t}}
for :math:`j = 1, ..., K`
t is the temperature parameter in softmax function. By default, t equals 1.0
Example::
x = [[ 1. 1. 1.]
[ 1. 1. 1.]]
softmax(x,axis=0) = [[ 0.5 0.5 0.5]
[ 0.5 0.5 0.5]]
softmax(x,axis=1) = [[ 0.33333334, 0.33333334, 0.33333334],
[ 0.33333334, 0.33333334, 0.33333334]]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<SoftmaxParam>)
.set_attr<nnvm::FListOutputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
const SoftmaxParam& param =
nnvm::get<SoftmaxParam>(attrs.parsed);
return (param.use_length.value()) ?
std::vector<std::string>{"data", "length"} :
std::vector<std::string>{"data"};
})
.set_attr<nnvm::FListOutputNames>("FListOutputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"output"};
})
.set_attr<FCompute>("FCompute<cpu>", SoftmaxCompute<cpu, mxnet_op::softmax_fwd>)
#if MXNET_USE_ONEDNN == 1
.set_attr<bool>("TIsDNNL", true)
.set_attr<FComputeEx>("FComputeEx<cpu>", SoftmaxComputeExCPU)
.set_attr<FInferStorageType>("FInferStorageType", SoftmaxStorageType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
#endif
.set_attr<nnvm::FGradient>("FGradient", SoftmaxFGradient{"_backward_softmax"})
// .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.set_attr<nnvm::FInferType>("FInferType", SoftmaxOpType)
.set_num_inputs([](const nnvm::NodeAttrs& attrs) {
const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed);
return (param.use_length.value()) ? 2 : 1;
})
.set_num_outputs(1)
.set_attr<mxnet::FInferShape>("FInferShape", SoftmaxOpShape)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 0}};
})
.add_argument("data", "NDArray-or-Symbol", "The input array.")
.add_argument("length", "NDArray-or-Symbol", "The length array.")
.add_arguments(SoftmaxParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_softmax)
.set_num_inputs(SoftmaxGradOpNumInputs)
.set_num_outputs([](const nnvm::NodeAttrs& attrs) {
return (softmax_use_length(attrs) ? 2 : 1);
})
.set_attr<nnvm::FListInputNames>("FListInputNames", SoftmaxGradOpInputNames)
.set_attr<mxnet::FInferShape>("FInferShape", SoftmaxGradOpShape)
.set_attr<nnvm::FInferType>("FInferType", SoftmaxGradOpType)
.set_attr<nnvm::FInplaceOption>("FInplaceOption", SoftmaxGradOpInplaceOption)
.add_argument("args", "NDArray-or-Symbol[]", "Positional input arguments")
.set_attr_parser(ParamParser<SoftmaxParam>)
#if MXNET_USE_ONEDNN == 1
.set_attr<bool>("TIsDNNL", true)
.set_attr<FComputeEx>("FComputeEx<cpu>", SoftmaxGradComputeExCPU)
.set_attr<FInferStorageType>("FInferStorageType", SoftmaxGradStorageType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
#endif
.set_attr<FCompute>("FCompute<cpu>",
SoftmaxGradCompute<cpu, op::mshadow_op::mul, mxnet_op::softmax_bwd>);
} // namespace op
} // namespace mxnet