| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file softmax.cc |
| * \brief CPU Implementation of softmax |
| */ |
| #include "./softmax-inl.h" |
| #include "../tensor/elemwise_unary_op.h" |
| #include "../tensor/elemwise_binary_op.h" |
| #include "../operator_common.h" |
| #if MXNET_USE_ONEDNN == 1 |
| #include "operator/nn/dnnl/dnnl_base-inl.h" |
| #include "operator/nn/dnnl/dnnl_softmax-inl.h" |
| #endif |
| |
| namespace mxnet { |
| namespace op { |
| DMLC_REGISTER_PARAMETER(SoftmaxParam); |
| |
| #if MXNET_USE_ONEDNN == 1 |
| static void SoftmaxComputeExCPU(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed); |
| if (SupportDNNLSoftmax(param, inputs[0])) { |
| DNNL_OPCHECK_INIT(false, outputs.size(), inputs, outputs); |
| DNNLRun(DNNLSoftmaxForward, attrs, ctx, inputs[0], req[0], outputs[0]); |
| auto fn = SoftmaxCompute<cpu, mxnet_op::softmax_fwd>; |
| DNNL_OPCHECK_RUN(fn, attrs, ctx, inputs, req, outputs); |
| return; |
| } |
| FallBackCompute(SoftmaxCompute<cpu, mxnet_op::softmax_fwd>, attrs, ctx, inputs, req, outputs); |
| } |
| |
| static void SoftmaxGradComputeExCPU(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed); |
| if (SupportDNNLSoftmax(param, inputs[1])) { |
| DNNL_OPCHECK_INIT(false, outputs.size(), inputs, outputs); |
| DNNLRun(DNNLSoftmaxBackward, attrs, ctx, inputs, req, outputs); |
| auto fn = SoftmaxGradCompute<cpu, op::mshadow_op::mul, mxnet_op::softmax_bwd>; |
| DNNL_OPCHECK_RUN(fn, attrs, ctx, inputs, req, outputs); |
| return; |
| } |
| FallBackCompute(SoftmaxGradCompute<cpu, op::mshadow_op::mul, mxnet_op::softmax_bwd>, |
| attrs, |
| ctx, |
| inputs, |
| req, |
| outputs); |
| } |
| |
| inline static bool SoftmaxStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed); |
| CHECK_EQ(in_attrs->size(), (param.use_length.value()) ? 2U : 1U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| |
| if (param.use_length.value()) { |
| auto& out_stype = out_attrs->at(0); |
| return storage_type_assign(&out_stype, kDefaultStorage, dispatch_mode, DispatchMode::kFCompute); |
| } |
| |
| return DNNLStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs, out_attrs); |
| } |
| |
| inline static bool SoftmaxGradStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| bool support = true; |
| if (softmax_use_length(attrs) || softmax_has_dtype_override(attrs)) { |
| support = false; |
| } |
| |
| CHECK_EQ(in_attrs->size(), SoftmaxGradOpNumInputs(attrs)); |
| CHECK_EQ(out_attrs->size(), softmax_use_length(attrs) ? 2U : 1U); |
| return DNNLStorageType(attrs, dev_mask, support, dispatch_mode, in_attrs, out_attrs); |
| } |
| #endif |
| |
| NNVM_REGISTER_OP(softmax) |
| .add_alias("_npx_softmax") |
| .describe(R"code(Applies the softmax function. |
| |
| The resulting array contains elements in the range (0,1) and the elements along the given axis sum up to 1. |
| |
| .. math:: |
| softmax(\mathbf{z/t})_j = \frac{e^{z_j/t}}{\sum_{k=1}^K e^{z_k/t}} |
| |
| for :math:`j = 1, ..., K` |
| |
| t is the temperature parameter in softmax function. By default, t equals 1.0 |
| |
| Example:: |
| |
| x = [[ 1. 1. 1.] |
| [ 1. 1. 1.]] |
| |
| softmax(x,axis=0) = [[ 0.5 0.5 0.5] |
| [ 0.5 0.5 0.5]] |
| |
| softmax(x,axis=1) = [[ 0.33333334, 0.33333334, 0.33333334], |
| [ 0.33333334, 0.33333334, 0.33333334]] |
| |
| )code" ADD_FILELINE) |
| .set_attr_parser(ParamParser<SoftmaxParam>) |
| .set_attr<nnvm::FListOutputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| const SoftmaxParam& param = |
| nnvm::get<SoftmaxParam>(attrs.parsed); |
| return (param.use_length.value()) ? |
| std::vector<std::string>{"data", "length"} : |
| std::vector<std::string>{"data"}; |
| }) |
| .set_attr<nnvm::FListOutputNames>("FListOutputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"output"}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", SoftmaxCompute<cpu, mxnet_op::softmax_fwd>) |
| #if MXNET_USE_ONEDNN == 1 |
| .set_attr<bool>("TIsDNNL", true) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", SoftmaxComputeExCPU) |
| .set_attr<FInferStorageType>("FInferStorageType", SoftmaxStorageType) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| #endif |
| .set_attr<nnvm::FGradient>("FGradient", SoftmaxFGradient{"_backward_softmax"}) |
| // .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) |
| .set_attr<nnvm::FInferType>("FInferType", SoftmaxOpType) |
| .set_num_inputs([](const nnvm::NodeAttrs& attrs) { |
| const SoftmaxParam& param = nnvm::get<SoftmaxParam>(attrs.parsed); |
| return (param.use_length.value()) ? 2 : 1; |
| }) |
| .set_num_outputs(1) |
| .set_attr<mxnet::FInferShape>("FInferShape", SoftmaxOpShape) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 0}}; |
| }) |
| .add_argument("data", "NDArray-or-Symbol", "The input array.") |
| .add_argument("length", "NDArray-or-Symbol", "The length array.") |
| .add_arguments(SoftmaxParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_softmax) |
| .set_num_inputs(SoftmaxGradOpNumInputs) |
| .set_num_outputs([](const nnvm::NodeAttrs& attrs) { |
| return (softmax_use_length(attrs) ? 2 : 1); |
| }) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", SoftmaxGradOpInputNames) |
| .set_attr<mxnet::FInferShape>("FInferShape", SoftmaxGradOpShape) |
| .set_attr<nnvm::FInferType>("FInferType", SoftmaxGradOpType) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", SoftmaxGradOpInplaceOption) |
| .add_argument("args", "NDArray-or-Symbol[]", "Positional input arguments") |
| .set_attr_parser(ParamParser<SoftmaxParam>) |
| #if MXNET_USE_ONEDNN == 1 |
| .set_attr<bool>("TIsDNNL", true) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", SoftmaxGradComputeExCPU) |
| .set_attr<FInferStorageType>("FInferStorageType", SoftmaxGradStorageType) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| #endif |
| .set_attr<FCompute>("FCompute<cpu>", |
| SoftmaxGradCompute<cpu, op::mshadow_op::mul, mxnet_op::softmax_bwd>); |
| |
| } // namespace op |
| } // namespace mxnet |