blob: d0db53b8ffa1db1d2a9452814ea93f883590475a [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file sparse_retain.cc
* \brief CPU implementation of sparse_retain operator
*/
#include "./sparse_retain-inl.h"
namespace mxnet {
namespace op {
// Add prefix "_sparse_" to prevent it from being registered
// under mxnet.ndarray in python frontend as this op only
// accepts row-sparse format ndarrays. It will be registered
// under mxnet.ndarray.sparse with name retain.
NNVM_REGISTER_OP(_sparse_retain)
.describe(R"code(Pick rows specified by user input index array from a row sparse matrix
and save them in the output sparse matrix.
Example::
data = [[1, 2], [3, 4], [5, 6]]
indices = [0, 1, 3]
shape = (4, 2)
rsp_in = row_sparse_array(data, indices)
to_retain = [0, 3]
rsp_out = retain(rsp_in, to_retain)
rsp_out.data = [[1, 2], [5, 6]]
rsp_out.indices = [0, 3]
The storage type of ``retain`` output depends on storage types of inputs
- retain(row_sparse, default) = row_sparse
- otherwise, ``retain`` is not supported
)code" ADD_FILELINE)
.set_num_inputs(2)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data", "indices"};
})
.set_attr<mxnet::FInferShape>("FInferShape", SparseRetainOpShape)
.set_attr<nnvm::FInferType>("FInferType", SparseRetainOpType)
.set_attr<FInferStorageType>("FInferStorageType", SparseRetainForwardInferStorageType)
.set_attr<FComputeEx>("FComputeEx<cpu>", SparseRetainOpForwardEx<cpu>)
.set_attr<nnvm::FGradient>("FGradient",
[](const nnvm::ObjectPtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
return MakeNonlossGradNode("_backward_sparse_retain", n, ograds,
{n->inputs[sr::kIdx]}, n->attrs.dict);
})
.add_argument("data", "NDArray-or-Symbol", "The input array for sparse_retain operator.")
.add_argument("indices", "NDArray-or-Symbol", "The index array of rows ids that will be retained.");
NNVM_REGISTER_OP(_backward_sparse_retain)
.set_num_inputs(2)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FInferStorageType>("FInferStorageType", SparseRetainBackwardInferStorageType)
.set_attr<FComputeEx>("FComputeEx<cpu>", SparseRetainOpBackwardEx<cpu>);
} // namespace op
} // namespace mxnet