| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2015 by Contributors |
| * \file elemwise_sum.cc |
| * \brief CPU implementation of elementwise sum operator |
| */ |
| #include "./elemwise_sum.h" |
| #include "../../ndarray/ndarray_function.h" |
| #include "../nn/mkldnn/mkldnn_ops-inl.h" |
| #include "../nn/mkldnn/mkldnn_base-inl.h" |
| #include "../../common/utils.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| struct ElementWiseSumParam : public dmlc::Parameter<ElementWiseSumParam> { |
| int num_args; |
| DMLC_DECLARE_PARAMETER(ElementWiseSumParam) { |
| DMLC_DECLARE_FIELD(num_args).set_lower_bound(1) |
| .describe("Number of inputs to be summed."); |
| } |
| }; |
| |
| DMLC_REGISTER_PARAMETER(ElementWiseSumParam); |
| |
| std::vector<nnvm::NodeEntry> ElementWiseSumGrad( |
| const nnvm::ObjectPtr& n, |
| const std::vector<nnvm::NodeEntry>& ograds) { |
| // identity constraints in the beginning for easier shape inference. |
| const nnvm::Op* copy_op = |
| nnvm::Op::Get("identity"); |
| CHECK_EQ(ograds.size(), 1); |
| std::vector<nnvm::NodeEntry> ret; |
| for (size_t i = 0; i < n->inputs.size(); ++i) { |
| nnvm::ObjectPtr node = nnvm::Node::Create(); |
| node->attrs.op = copy_op; |
| node->inputs = {ograds[0]}; |
| ret.emplace_back(std::move(node)); |
| } |
| return ret; |
| } |
| |
| bool ElementWiseSumShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector *in_attrs, |
| mxnet::ShapeVector *out_attrs) { |
| CHECK_EQ(out_attrs->size(), 1); |
| return ElemwiseAttr<mxnet::TShape, shape_is_none, shape_assign, true, shape_string>( |
| attrs, in_attrs, out_attrs, mxnet::TShape()); |
| } |
| |
| bool ElementWiseSumType(const nnvm::NodeAttrs& attrs, |
| std::vector<int> *in_attrs, |
| std::vector<int> *out_attrs) { |
| CHECK_EQ(out_attrs->size(), 1); |
| return ElemwiseAttr<int, type_is_none, type_assign, true, type_string>( |
| attrs, in_attrs, out_attrs, -1); |
| } |
| |
| bool ElementWiseSumForwardInferStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int> *in_attrs, |
| std::vector<int> *out_attrs) { |
| CHECK(!in_attrs->empty()); |
| CHECK_EQ(out_attrs->size(), 1U); |
| bool ret = ElemwiseStorageAttr<false, true, false>(attrs, dev_mask, dispatch_mode, |
| in_attrs, out_attrs); |
| #if MXNET_USE_MKLDNN == 1 |
| // We should always use FComputeEx. |
| if (dev_mask == mshadow::cpu::kDevMask |
| && common::ContainsOnlyStorage(*in_attrs, kDefaultStorage) |
| && out_attrs->at(0) == kDefaultStorage) { |
| *dispatch_mode = DispatchMode::kFComputeEx; |
| } |
| #endif |
| return ret; |
| } |
| |
| #if MXNET_USE_MKLDNN == 1 |
| static inline bool IsMKLDNNData(const std::vector<NDArray> &arrs) { |
| for (auto &arr : arrs) { |
| if (!arr.IsMKLDNNData()) |
| return false; |
| } |
| return true; |
| } |
| #endif |
| |
| void ElementWiseSumComputeExCPU(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| CHECK(!inputs.empty()); |
| CHECK_EQ(outputs.size(), 1U); |
| CHECK_EQ(req.size(), 1U); |
| if (req[0] == kNullOp) return; |
| #if MXNET_USE_MKLDNN == 1 |
| if (IsMKLDNNData(inputs)) { |
| MKLDNNRun(MKLDNNSumForward, attrs, ctx, inputs, req, outputs); |
| } else if (common::ContainsOnlyStorage(inputs, kDefaultStorage)) { |
| FallBackCompute(ElementWiseSumCompute<cpu>, attrs, ctx, inputs, req, outputs); |
| } |
| #endif |
| else if (common::ContainsOnlyStorage(inputs, kRowSparseStorage) || // NOLINT(*) |
| (inputs.size() == 3U && inputs[0].storage_type() == kDefaultStorage && |
| inputs[1].storage_type() == kCSRStorage && inputs[2].storage_type() == kDefaultStorage) || |
| (inputs.size() > 4U && common::ContainsStorageType(inputs, kDefaultStorage) && |
| outputs[0].storage_type() == kDefaultStorage)) { |
| mshadow::Stream<cpu>* s = ctx.get_stream<cpu>(); |
| Resource rsc = ResourceManager::Get()->Request(ctx.run_ctx.get_ctx(), |
| ResourceRequest(ResourceRequest::kTempSpace)); |
| NDArray out_nd = outputs[0]; |
| mxnet::ndarray::ElementwiseSum<cpu>(s, rsc, inputs, &out_nd); |
| } else { |
| LogUnimplementedOp(attrs, ctx, inputs, req, outputs); |
| } |
| } |
| |
| NNVM_REGISTER_OP(add_n) |
| MXNET_ADD_SPARSE_OP_ALIAS(add_n) |
| MXNET_ADD_SPARSE_OP_ALIAS(ElementWiseSum) |
| .add_alias("ElementWiseSum") |
| .describe(R"doc(Adds all input arguments element-wise. |
| |
| .. math:: |
| add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n |
| |
| ``add_n`` is potentially more efficient than calling ``add`` by `n` times. |
| |
| The storage type of ``add_n`` output depends on storage types of inputs |
| |
| - add_n(row_sparse, row_sparse, ..) = row_sparse |
| - add_n(default, csr, default) = default |
| - add_n(any input combinations longer than 4 (>4) with at least one default type) = default |
| - otherwise, ``add_n`` falls all inputs back to default storage and generates default storage |
| |
| )doc" ADD_FILELINE) |
| .set_attr_parser(ParamParser<ElementWiseSumParam>) |
| .set_num_inputs([](const nnvm::NodeAttrs& attrs) { |
| uint32_t ret = dmlc::get<ElementWiseSumParam>(attrs.parsed).num_args; |
| return ret; |
| }) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| uint32_t num_args = dmlc::get<ElementWiseSumParam>(attrs.parsed).num_args; |
| std::vector<std::string> ret; |
| for (uint32_t i = 0; i < num_args; ++i) { |
| ret.push_back(std::string("arg") + std::to_string(i)); |
| } |
| return ret; |
| }) |
| .set_attr<std::string>("key_var_num_args", "num_args") |
| .set_attr<FCompute>("FCompute<cpu>", ElementWiseSumCompute<cpu>) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", ElementWiseSumComputeExCPU) |
| .set_attr<nnvm::FInplaceOption>( |
| "FInplaceOption", [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 0}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| #if MXNET_USE_MKLDNN == 1 |
| .set_attr<bool>("TIsMKLDNN", true) |
| #endif |
| .set_attr<mxnet::FInferShape>("FInferShape", ElementWiseSumShape) |
| .set_attr<nnvm::FInferType>("FInferType", ElementWiseSumType) |
| .set_attr<FInferStorageType>("FInferStorageType", ElementWiseSumForwardInferStorageType) |
| .set_attr<nnvm::FGradient>("FGradient", ElementWiseSumGrad) |
| .add_argument("args", "NDArray-or-Symbol[]", "Positional input arguments"); |
| |
| } // namespace op |
| } // namespace mxnet |