| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2018 by Contributors |
| * \file pdf_op.cc |
| * \brief CPU-operators for computing the pdf of random distributions. |
| */ |
| |
| #include "./pdf_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| DMLC_REGISTER_PARAMETER(PdfParam); |
| |
| #define MXNET_OPERATOR_REGISTER_PDF(distr, pdffunc, num_parms, \ |
| parm_name_1, parm_name_2, \ |
| parm_desc_1, parm_desc_2, \ |
| description, vectorparms) \ |
| NNVM_REGISTER_OP(_random_pdf_##distr) \ |
| .add_alias("random_pdf_" #distr) \ |
| .describe(description()+std::string(ADD_FILELINE)) \ |
| .set_num_inputs(num_parms+1) \ |
| .set_num_outputs(1) \ |
| .set_attr_parser(ParamParser<PdfParam>) \ |
| .set_attr<nnvm::FListInputNames>("FListInputNames", \ |
| [](const NodeAttrs& attrs) { \ |
| std::vector<std::string> v = {"sample", parm_name_1, parm_name_2}; \ |
| v.resize(num_parms+1); \ |
| return v; \ |
| }) \ |
| .set_attr<mxnet::FInferShape>("FInferShape", PdfOpShape<vectorparms>) \ |
| .set_attr<nnvm::FInferType>("FInferType", ElemwiseType<num_parms+1, 1>) \ |
| .set_attr<FCompute>("FCompute<cpu>", PdfOpForward<cpu, pdffunc, num_parms, vectorparms>) \ |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseInOut{"_backward_pdf_" #distr}) \ |
| .add_argument("sample", "NDArray-or-Symbol", "Samples from the distributions.") \ |
| .add_argument(parm_name_1, "NDArray-or-Symbol", parm_desc_1) \ |
| .add_arguments(PdfParam::__FIELDS__()) |
| |
| #define MXNET_OPERATOR_REGISTER_PDF_GRAD(distr, pdffunc, num_parms, vectorparms) \ |
| NNVM_REGISTER_OP(_backward_pdf_##distr) \ |
| .set_num_inputs(num_parms+3) \ |
| .set_num_outputs(num_parms+1) \ |
| .set_attr_parser(ParamParser<PdfParam>) \ |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", [](const NodeAttrs& attrs) \ |
| { std::vector<std::pair<int, int> > v = {{1, 0}, {2, 1}, {3, 2}}; \ |
| v.resize(num_parms+1); \ |
| return v; }) \ |
| .set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& attrs) \ |
| { return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; }) \ |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) \ |
| .set_attr<FCompute>("FCompute<cpu>", PdfOpBackward<cpu, pdffunc##_Grad, num_parms, vectorparms>); |
| |
| |
| #define MXNET_OPERATOR_REGISTER_PDF1(distr, pdffunc, parm_name, parm_desc, \ |
| description, vectorparms) \ |
| MXNET_OPERATOR_REGISTER_PDF(distr, pdffunc, 1, parm_name, parm_name, \ |
| parm_desc, parm_desc, description, vectorparms); \ |
| MXNET_OPERATOR_REGISTER_PDF_GRAD(distr, pdffunc, 1, vectorparms) |
| |
| #define MXNET_OPERATOR_REGISTER_PDF2(distr, pdffunc, parm_name_1, parm_name_2, \ |
| parm_desc_1, parm_desc_2, description) \ |
| MXNET_OPERATOR_REGISTER_PDF(distr, pdffunc, 2, parm_name_1, parm_name_2, \ |
| parm_desc_1, parm_desc_2, description, false) \ |
| .add_argument(parm_name_2, "NDArray-or-Symbol", parm_desc_2); \ |
| MXNET_OPERATOR_REGISTER_PDF_GRAD(distr, pdffunc, 2, false) |
| |
| inline std::string uniform_desc() { |
| return std::string(R"code(Computes the value of the PDF of *sample* of |
| uniform distributions on the intervals given by *[low,high)*. |
| |
| *low* and *high* must have the same shape, which must match the leftmost subshape |
| of *sample*. That is, *sample* can have the same shape as *low* and *high*, in which |
| case the output contains one density per distribution, or *sample* can be a tensor |
| of tensors with that shape, in which case the output is a tensor of densities such that |
| the densities at index *i* in the output are given by the samples at index *i* in *sample* |
| parameterized by the values of *low* and *high* at index *i*. |
| |
| Examples:: |
| |
| random_pdf_uniform(sample=[[1,2,3,4]], low=[0], high=[10]) = [0.1, 0.1, 0.1, 0.1] |
| |
| sample = [[[1, 2, 3], |
| [1, 2, 3]], |
| [[1, 2, 3], |
| [1, 2, 3]]] |
| low = [[0, 0], |
| [0, 0]] |
| high = [[ 5, 10], |
| [15, 20]] |
| random_pdf_uniform(sample=sample, low=low, high=high) = |
| [[[0.2, 0.2, 0.2 ], |
| [0.1, 0.1, 0.1 ]], |
| [[0.06667, 0.06667, 0.06667], |
| [0.05, 0.05, 0.05 ]]] |
| |
| )code"); |
| } |
| |
| inline std::string normal_desc() { |
| return std::string(R"code(Computes the value of the PDF of *sample* of |
| normal distributions with parameters *mu* (mean) and *sigma* (standard deviation). |
| |
| *mu* and *sigma* must have the same shape, which must match the leftmost subshape |
| of *sample*. That is, *sample* can have the same shape as *mu* and *sigma*, in which |
| case the output contains one density per distribution, or *sample* can be a tensor |
| of tensors with that shape, in which case the output is a tensor of densities such that |
| the densities at index *i* in the output are given by the samples at index *i* in *sample* |
| parameterized by the values of *mu* and *sigma* at index *i*. |
| |
| Examples:: |
| |
| sample = [[-2, -1, 0, 1, 2]] |
| random_pdf_normal(sample=sample, mu=[0], sigma=[1]) = |
| [[0.05399097, 0.24197073, 0.3989423, 0.24197073, 0.05399097]] |
| |
| random_pdf_normal(sample=sample*2, mu=[0,0], sigma=[1,2]) = |
| [[0.05399097, 0.24197073, 0.3989423, 0.24197073, 0.05399097], |
| [0.12098537, 0.17603266, 0.19947115, 0.17603266, 0.12098537]] |
| )code"); |
| } |
| |
| inline std::string gamma_desc() { |
| return std::string(R"code(Computes the value of the PDF of *sample* of |
| gamma distributions with parameters *alpha* (shape) and *beta* (rate). |
| |
| *alpha* and *beta* must have the same shape, which must match the leftmost subshape |
| of *sample*. That is, *sample* can have the same shape as *alpha* and *beta*, in which |
| case the output contains one density per distribution, or *sample* can be a tensor |
| of tensors with that shape, in which case the output is a tensor of densities such that |
| the densities at index *i* in the output are given by the samples at index *i* in *sample* |
| parameterized by the values of *alpha* and *beta* at index *i*. |
| |
| Examples:: |
| |
| random_pdf_gamma(sample=[[1,2,3,4,5]], alpha=[5], beta=[1]) = |
| [[0.01532831, 0.09022352, 0.16803136, 0.19536681, 0.17546739]] |
| |
| sample = [[1, 2, 3, 4, 5], |
| [2, 3, 4, 5, 6], |
| [3, 4, 5, 6, 7]] |
| |
| random_pdf_gamma(sample=sample, alpha=[5,6,7], beta=[1,1,1]) = |
| [[0.01532831, 0.09022352, 0.16803136, 0.19536681, 0.17546739], |
| [0.03608941, 0.10081882, 0.15629345, 0.17546739, 0.16062315], |
| [0.05040941, 0.10419563, 0.14622283, 0.16062315, 0.14900276]] |
| )code"); |
| } |
| |
| inline std::string exponential_desc() { |
| return std::string(R"code(Computes the value of the PDF of *sample* of |
| exponential distributions with parameters *lam* (rate). |
| |
| The shape of *lam* must match the leftmost subshape of *sample*. That is, *sample* |
| can have the same shape as *lam*, in which case the output contains one density per |
| distribution, or *sample* can be a tensor of tensors with that shape, in which case |
| the output is a tensor of densities such that the densities at index *i* in the output |
| are given by the samples at index *i* in *sample* parameterized by the value of *lam* |
| at index *i*. |
| |
| Examples:: |
| |
| random_pdf_exponential(sample=[[1, 2, 3]], lam=[1]) = |
| [[0.36787945, 0.13533528, 0.04978707]] |
| |
| sample = [[1,2,3], |
| [1,2,3], |
| [1,2,3]] |
| |
| random_pdf_exponential(sample=sample, lam=[1,0.5,0.25]) = |
| [[0.36787945, 0.13533528, 0.04978707], |
| [0.30326533, 0.18393973, 0.11156508], |
| [0.1947002, 0.15163267, 0.11809164]] |
| )code"); |
| } |
| |
| inline std::string poisson_desc() { |
| return std::string(R"code(Computes the value of the PDF of *sample* of |
| Poisson distributions with parameters *lam* (rate). |
| |
| The shape of *lam* must match the leftmost subshape of *sample*. That is, *sample* |
| can have the same shape as *lam*, in which case the output contains one density per |
| distribution, or *sample* can be a tensor of tensors with that shape, in which case |
| the output is a tensor of densities such that the densities at index *i* in the output |
| are given by the samples at index *i* in *sample* parameterized by the value of *lam* |
| at index *i*. |
| |
| Examples:: |
| |
| random_pdf_poisson(sample=[[0,1,2,3]], lam=[1]) = |
| [[0.36787945, 0.36787945, 0.18393973, 0.06131324]] |
| |
| sample = [[0,1,2,3], |
| [0,1,2,3], |
| [0,1,2,3]] |
| |
| random_pdf_poisson(sample=sample, lam=[1,2,3]) = |
| [[0.36787945, 0.36787945, 0.18393973, 0.06131324], |
| [0.13533528, 0.27067056, 0.27067056, 0.18044704], |
| [0.04978707, 0.14936121, 0.22404182, 0.22404182]] |
| )code"); |
| } |
| |
| inline std::string negative_binomial_desc() { |
| return std::string(R"code(Computes the value of the PDF of samples of |
| negative binomial distributions with parameters *k* (failure limit) and *p* (failure probability). |
| |
| *k* and *p* must have the same shape, which must match the leftmost subshape |
| of *sample*. That is, *sample* can have the same shape as *k* and *p*, in which |
| case the output contains one density per distribution, or *sample* can be a tensor |
| of tensors with that shape, in which case the output is a tensor of densities such that |
| the densities at index *i* in the output are given by the samples at index *i* in *sample* |
| parameterized by the values of *k* and *p* at index *i*. |
| |
| Examples:: |
| |
| random_pdf_negative_binomial(sample=[[1,2,3,4]], k=[1], p=a[0.5]) = |
| [[0.25, 0.125, 0.0625, 0.03125]] |
| |
| # Note that k may be real-valued |
| sample = [[1,2,3,4], |
| [1,2,3,4]] |
| random_pdf_negative_binomial(sample=sample, k=[1, 1.5], p=[0.5, 0.5]) = |
| [[0.25, 0.125, 0.0625, 0.03125 ], |
| [0.26516506, 0.16572815, 0.09667476, 0.05437956]] |
| )code"); |
| } |
| |
| inline std::string generalized_negative_binomial_desc() { |
| return std::string(R"code(Computes the value of the PDF of *sample* of |
| generalized negative binomial distributions with parameters *mu* (mean) |
| and *alpha* (dispersion). This can be understood as a reparameterization of |
| the negative binomial, where *k* = *1 / alpha* and *p* = *1 / (mu \* alpha + 1)*. |
| |
| *mu* and *alpha* must have the same shape, which must match the leftmost subshape |
| of *sample*. That is, *sample* can have the same shape as *mu* and *alpha*, in which |
| case the output contains one density per distribution, or *sample* can be a tensor |
| of tensors with that shape, in which case the output is a tensor of densities such that |
| the densities at index *i* in the output are given by the samples at index *i* in *sample* |
| parameterized by the values of *mu* and *alpha* at index *i*. |
| |
| Examples:: |
| |
| random_pdf_generalized_negative_binomial(sample=[[1, 2, 3, 4]], alpha=[1], mu=[1]) = |
| [[0.25, 0.125, 0.0625, 0.03125]] |
| |
| sample = [[1,2,3,4], |
| [1,2,3,4]] |
| random_pdf_generalized_negative_binomial(sample=sample, alpha=[1, 0.6666], mu=[1, 1.5]) = |
| [[0.25, 0.125, 0.0625, 0.03125 ], |
| [0.26517063, 0.16573331, 0.09667706, 0.05437994]] |
| )code"); |
| } |
| |
| inline std::string dirichlet_desc() { |
| return std::string(R"code(Computes the value of the PDF of *sample* of |
| Dirichlet distributions with parameter *alpha*. |
| |
| The shape of *alpha* must match the leftmost subshape of *sample*. That is, *sample* |
| can have the same shape as *alpha*, in which case the output contains one density per |
| distribution, or *sample* can be a tensor of tensors with that shape, in which case |
| the output is a tensor of densities such that the densities at index *i* in the output |
| are given by the samples at index *i* in *sample* parameterized by the value of *alpha* |
| at index *i*. |
| |
| Examples:: |
| |
| random_pdf_dirichlet(sample=[[1,2],[2,3],[3,4]], alpha=[2.5, 2.5]) = |
| [38.413498, 199.60245, 564.56085] |
| |
| sample = [[[1, 2, 3], [10, 20, 30], [100, 200, 300]], |
| [[0.1, 0.2, 0.3], [0.01, 0.02, 0.03], [0.001, 0.002, 0.003]]] |
| |
| random_pdf_dirichlet(sample=sample, alpha=[0.1, 0.4, 0.9]) = |
| [[2.3257459e-02, 5.8420084e-04, 1.4674458e-05], |
| [9.2589635e-01, 3.6860607e+01, 1.4674468e+03]] |
| )code"); |
| } |
| |
| MXNET_OPERATOR_REGISTER_PDF2(uniform, PDF_Uniform, "low", "high", |
| "Lower bounds of the distributions.", "Upper bounds of the distributions.", uniform_desc) |
| MXNET_OPERATOR_REGISTER_PDF2(normal, PDF_Normal, "mu", "sigma", |
| "Means of the distributions.", "Standard deviations of the distributions.", normal_desc) |
| MXNET_OPERATOR_REGISTER_PDF2(gamma, PDF_Gamma, "alpha", "beta", |
| "Alpha (shape) parameters of the distributions.", "Beta (scale) parameters of the distributions.", |
| gamma_desc) |
| MXNET_OPERATOR_REGISTER_PDF1(exponential, PDF_Exponential, "lam", |
| "Lambda (rate) parameters of the distributions.", exponential_desc, false) |
| MXNET_OPERATOR_REGISTER_PDF1(poisson, PDF_Poisson, "lam", |
| "Lambda (rate) parameters of the distributions.", poisson_desc, false) |
| MXNET_OPERATOR_REGISTER_PDF2(negative_binomial, PDF_NegativeBinomial, "k", "p", |
| "Limits of unsuccessful experiments.", "Failure probabilities in each experiment.", |
| negative_binomial_desc) |
| MXNET_OPERATOR_REGISTER_PDF2(generalized_negative_binomial, |
| PDF_GeneralizedNegativeBinomial, "mu", "alpha", |
| "Means of the distributions.", "Alpha (dispersion) parameters of the distributions.", |
| generalized_negative_binomial_desc) |
| MXNET_OPERATOR_REGISTER_PDF1(dirichlet, PDF_Dirichlet, "alpha", |
| "Concentration parameters of the distributions.", dirichlet_desc, true) |
| |
| } // namespace op |
| } // namespace mxnet |