blob: f197ebd6ecc8e2315cecfebff55b4bac4663df9c [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2017 by Contributors
* \file quantized_batch_norm.cc
* \brief
* \author Yixin Bao
*/
#include <mxnet/op_attr_types.h>
#include "../nn/batch_norm-inl.h"
#if MXNET_USE_MKLDNN == 1
#include "../nn/mkldnn/mkldnn_batch_norm-inl.h"
#endif
namespace mxnet {
namespace op {
bool QuantizedBatchNormShape(const nnvm::NodeAttrs& attrs, mxnet::ShapeVector* in_shape,
mxnet::ShapeVector* out_shape) {
const BatchNormParam& param = nnvm::get<BatchNormParam>(attrs.parsed);
using namespace mshadow;
CHECK_EQ(in_shape->size(), 7U)
<< "Input:[data, gamma, beta, moving_mean, moving_var, min_data, max_data]";
CHECK_EQ(out_shape->size(), 3U);
const mxnet::TShape& dshape = in_shape->at(batchnorm::kData);
if (!mxnet::ndim_is_known(dshape)) {
return false;
}
const int channelAxis = param.axis < 0 ? dshape.ndim() + param.axis : param.axis;
CHECK_LT(channelAxis, dshape.ndim()) << "Channel axis out of range: " << param.axis;
const int channelCount = dshape[channelAxis];
SHAPE_ASSIGN_CHECK(*in_shape, 1, mxnet::TShape(Shape1(channelCount))) // gamma,beta
SHAPE_ASSIGN_CHECK(*in_shape, 2, mxnet::TShape(Shape1(channelCount)))
SHAPE_ASSIGN_CHECK(*in_shape, 3, mxnet::TShape(Shape1(channelCount))); // moving_mean, moving_var
SHAPE_ASSIGN_CHECK(*in_shape, 4, mxnet::TShape(Shape1(channelCount)))
SHAPE_ASSIGN_CHECK(*in_shape, 5, mxnet::TShape(1, 1)); // min_data, max_data
SHAPE_ASSIGN_CHECK(*in_shape, 6, mxnet::TShape(1, 1));
SHAPE_ASSIGN_CHECK(*out_shape, 0, dshape);
SHAPE_ASSIGN_CHECK(*out_shape, 1, mxnet::TShape(1, 1)); // min_output, max_output
SHAPE_ASSIGN_CHECK(*out_shape, 2, mxnet::TShape(1, 1));
return true;
}
bool QuantizedBatchNormType(const nnvm::NodeAttrs& attrs, std::vector<int>* in_type,
std::vector<int>* out_type) {
using namespace mshadow;
CHECK_EQ(in_type->size(), 7U);
CHECK_EQ(out_type->size(), 3U);
#if MXNET_USE_MKLDNN == 1
CHECK(in_type->at(0) == mshadow::kInt8 || in_type->at(0) == mshadow::kUint8)
<< "QuantizedBatchNorm with MKLDNN backend only supports int8/uint8 input, while "
<< in_type->at(0) << " is given.";
#else
TYPE_ASSIGN_CHECK(*in_type, 0, mshadow::kInt8);
#endif
for (size_t i = 1; i < 7; ++i) {
TYPE_ASSIGN_CHECK(*in_type, i, mshadow::kFloat32);
}
TYPE_ASSIGN_CHECK(*out_type, 0, mshadow::kInt8);
TYPE_ASSIGN_CHECK(*out_type, 1, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*out_type, 2, mshadow::kFloat32);
return true;
}
NNVM_REGISTER_OP(_contrib_quantized_batch_norm)
.describe(R"code(BatchNorm operator for input and output data type of int8.
The input and output data comes with min and max thresholds for quantizing
the float32 data into int8.
.. Note::
This operator only supports forward propogation. DO NOT use it in training.
)code" ADD_FILELINE)
.set_num_inputs(7)
.set_num_outputs(3)
.set_attr_parser(ParamParser<BatchNormParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data", "gamma", "beta",
"moving_mean", "moving_var", "min_data", "max_data"};
})
.set_attr<nnvm::FListOutputNames>("FListOutputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"output", "min_output", "max_output"};
})
.set_attr<nnvm::FMutateInputs>("FMutateInputs", [](const nnvm::NodeAttrs& attrs) {
return std::vector<uint32_t>{3, 4};
})
.set_attr<mxnet::FInferShape>("FInferShape", QuantizedBatchNormShape)
.set_attr<nnvm::FInferType>("FInferType", QuantizedBatchNormType)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.set_attr<FNeedRequantize>("FNeedRequantize", [](const NodeAttrs& attrs) { return false; })
.set_attr<FNeedCalibrateInput>("FNeedCalibrateOutput", [](const NodeAttrs& attrs){
return std::vector<int>{0};
})
.add_argument("data", "NDArray-or-Symbol", "Input data.")
.add_argument("gamma", "NDArray-or-Symbol", "gamma.")
.add_argument("beta", "NDArray-or-Symbol", "beta.")
.add_argument("moving_mean", "NDArray-or-Symbol", "moving_mean.")
.add_argument("moving_var", "NDArray-or-Symbol", "moving_var.")
.add_argument("min_data", "NDArray-or-Symbol", "Minimum value of data.")
.add_argument("max_data", "NDArray-or-Symbol", "Maximum value of data.")
.add_arguments(BatchNormParam::__FIELDS__());
NNVM_REGISTER_OP(BatchNorm)
.set_attr<FQuantizedOp>("FQuantizedOp", [](const NodeAttrs& attrs) {
nnvm::ObjectPtr node = nnvm::Node::Create();
node->attrs.op = Op::Get("_contrib_quantized_batch_norm");
node->attrs.name = "quantized_" + attrs.name;
node->attrs.dict = attrs.dict;
if (node->op()->attr_parser != nullptr) {
node->op()->attr_parser(&(node->attrs));
}
return node;
})
.set_attr<FAvoidQuantizeInput>("FAvoidQuantizeInput", [](
const NodeAttrs &attrs, const size_t index, const std::string quantize_granularity) {
return (index != 0);
});
} // namespace op
} // namespace mxnet