| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2017 by Contributors |
| * \file quantized_batch_norm.cc |
| * \brief |
| * \author Yixin Bao |
| */ |
| #include <mxnet/op_attr_types.h> |
| #include "../nn/batch_norm-inl.h" |
| #if MXNET_USE_MKLDNN == 1 |
| #include "../nn/mkldnn/mkldnn_batch_norm-inl.h" |
| #endif |
| |
| namespace mxnet { |
| namespace op { |
| |
| bool QuantizedBatchNormShape(const nnvm::NodeAttrs& attrs, mxnet::ShapeVector* in_shape, |
| mxnet::ShapeVector* out_shape) { |
| const BatchNormParam& param = nnvm::get<BatchNormParam>(attrs.parsed); |
| using namespace mshadow; |
| CHECK_EQ(in_shape->size(), 7U) |
| << "Input:[data, gamma, beta, moving_mean, moving_var, min_data, max_data]"; |
| CHECK_EQ(out_shape->size(), 3U); |
| |
| const mxnet::TShape& dshape = in_shape->at(batchnorm::kData); |
| if (!mxnet::ndim_is_known(dshape)) { |
| return false; |
| } |
| const int channelAxis = param.axis < 0 ? dshape.ndim() + param.axis : param.axis; |
| CHECK_LT(channelAxis, dshape.ndim()) << "Channel axis out of range: " << param.axis; |
| const int channelCount = dshape[channelAxis]; |
| |
| SHAPE_ASSIGN_CHECK(*in_shape, 1, mxnet::TShape(Shape1(channelCount))) // gamma,beta |
| SHAPE_ASSIGN_CHECK(*in_shape, 2, mxnet::TShape(Shape1(channelCount))) |
| SHAPE_ASSIGN_CHECK(*in_shape, 3, mxnet::TShape(Shape1(channelCount))); // moving_mean, moving_var |
| SHAPE_ASSIGN_CHECK(*in_shape, 4, mxnet::TShape(Shape1(channelCount))) |
| SHAPE_ASSIGN_CHECK(*in_shape, 5, mxnet::TShape(1, 1)); // min_data, max_data |
| SHAPE_ASSIGN_CHECK(*in_shape, 6, mxnet::TShape(1, 1)); |
| |
| SHAPE_ASSIGN_CHECK(*out_shape, 0, dshape); |
| SHAPE_ASSIGN_CHECK(*out_shape, 1, mxnet::TShape(1, 1)); // min_output, max_output |
| SHAPE_ASSIGN_CHECK(*out_shape, 2, mxnet::TShape(1, 1)); |
| return true; |
| } |
| |
| bool QuantizedBatchNormType(const nnvm::NodeAttrs& attrs, std::vector<int>* in_type, |
| std::vector<int>* out_type) { |
| using namespace mshadow; |
| CHECK_EQ(in_type->size(), 7U); |
| CHECK_EQ(out_type->size(), 3U); |
| |
| #if MXNET_USE_MKLDNN == 1 |
| CHECK(in_type->at(0) == mshadow::kInt8 || in_type->at(0) == mshadow::kUint8) |
| << "QuantizedBatchNorm with MKLDNN backend only supports int8/uint8 input, while " |
| << in_type->at(0) << " is given."; |
| #else |
| TYPE_ASSIGN_CHECK(*in_type, 0, mshadow::kInt8); |
| #endif |
| for (size_t i = 1; i < 7; ++i) { |
| TYPE_ASSIGN_CHECK(*in_type, i, mshadow::kFloat32); |
| } |
| |
| TYPE_ASSIGN_CHECK(*out_type, 0, mshadow::kInt8); |
| TYPE_ASSIGN_CHECK(*out_type, 1, mshadow::kFloat32); |
| TYPE_ASSIGN_CHECK(*out_type, 2, mshadow::kFloat32); |
| |
| return true; |
| } |
| |
| NNVM_REGISTER_OP(_contrib_quantized_batch_norm) |
| .describe(R"code(BatchNorm operator for input and output data type of int8. |
| The input and output data comes with min and max thresholds for quantizing |
| the float32 data into int8. |
| |
| .. Note:: |
| This operator only supports forward propogation. DO NOT use it in training. |
| )code" ADD_FILELINE) |
| .set_num_inputs(7) |
| .set_num_outputs(3) |
| .set_attr_parser(ParamParser<BatchNormParam>) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data", "gamma", "beta", |
| "moving_mean", "moving_var", "min_data", "max_data"}; |
| }) |
| .set_attr<nnvm::FListOutputNames>("FListOutputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"output", "min_output", "max_output"}; |
| }) |
| .set_attr<nnvm::FMutateInputs>("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { |
| return std::vector<uint32_t>{3, 4}; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", QuantizedBatchNormShape) |
| .set_attr<nnvm::FInferType>("FInferType", QuantizedBatchNormType) |
| .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) |
| .set_attr<FNeedRequantize>("FNeedRequantize", [](const NodeAttrs& attrs) { return false; }) |
| .set_attr<FNeedCalibrateInput>("FNeedCalibrateOutput", [](const NodeAttrs& attrs){ |
| return std::vector<int>{0}; |
| }) |
| .add_argument("data", "NDArray-or-Symbol", "Input data.") |
| .add_argument("gamma", "NDArray-or-Symbol", "gamma.") |
| .add_argument("beta", "NDArray-or-Symbol", "beta.") |
| .add_argument("moving_mean", "NDArray-or-Symbol", "moving_mean.") |
| .add_argument("moving_var", "NDArray-or-Symbol", "moving_var.") |
| .add_argument("min_data", "NDArray-or-Symbol", "Minimum value of data.") |
| .add_argument("max_data", "NDArray-or-Symbol", "Maximum value of data.") |
| .add_arguments(BatchNormParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(BatchNorm) |
| .set_attr<FQuantizedOp>("FQuantizedOp", [](const NodeAttrs& attrs) { |
| nnvm::ObjectPtr node = nnvm::Node::Create(); |
| node->attrs.op = Op::Get("_contrib_quantized_batch_norm"); |
| node->attrs.name = "quantized_" + attrs.name; |
| node->attrs.dict = attrs.dict; |
| if (node->op()->attr_parser != nullptr) { |
| node->op()->attr_parser(&(node->attrs)); |
| } |
| return node; |
| }) |
| .set_attr<FAvoidQuantizeInput>("FAvoidQuantizeInput", []( |
| const NodeAttrs &attrs, const size_t index, const std::string quantize_granularity) { |
| return (index != 0); |
| }); |
| |
| } // namespace op |
| } // namespace mxnet |