| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2019 by Contributors |
| * \file quantized_activation.cc |
| */ |
| #include <mxnet/op_attr_types.h> |
| #include "../nn/activation-inl.h" |
| #include "../elemwise_op_common.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| bool QuantizedActivationShape(const nnvm::NodeAttrs& attrs, |
| std::vector<TShape> *in_shape, |
| std::vector<TShape> *out_shape) { |
| CHECK_EQ(in_shape->size(), 3U); |
| if (shape_is_none(in_shape->at(0))) return false; |
| SHAPE_ASSIGN_CHECK(*in_shape, 1, TShape{1}); |
| SHAPE_ASSIGN_CHECK(*in_shape, 2, TShape{1}); |
| out_shape->clear(); |
| out_shape->push_back((*in_shape)[0]); |
| out_shape->push_back(TShape{1}); |
| out_shape->push_back(TShape{1}); |
| return true; |
| } |
| |
| bool QuantizedActivationType(const nnvm::NodeAttrs& attrs, |
| std::vector<int> *in_type, |
| std::vector<int> *out_type) { |
| const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed); |
| CHECK_EQ(in_type->size(), 3U); |
| CHECK_EQ(out_type->size(), 3U); |
| if (param.act_type == activation::kReLU) { |
| TYPE_ASSIGN_CHECK(*out_type, 0, mshadow::kInt8); |
| } else { |
| LOG(FATAL) << "_contrib_quantized_act only supports act_type=relu for now"; |
| } |
| TYPE_ASSIGN_CHECK(*in_type, 1, mshadow::kFloat32); |
| TYPE_ASSIGN_CHECK(*in_type, 2, mshadow::kFloat32); |
| TYPE_ASSIGN_CHECK(*out_type, 1, mshadow::kFloat32); |
| TYPE_ASSIGN_CHECK(*out_type, 2, mshadow::kFloat32); |
| return true; |
| } |
| |
| inline static bool QuantizedActivationStorageType(const nnvm::NodeAttrs &attrs, |
| const int dev_mask, |
| DispatchMode *dispatch_mode, |
| std::vector<int> *in_attrs, |
| std::vector<int> *out_attrs) { |
| CHECK_EQ(in_attrs->size(), 3); |
| |
| *dispatch_mode = DispatchMode::kFCompute; |
| #if MXNET_USE_MKLDNN == 1 |
| const ActivationParam ¶m = nnvm::get<ActivationParam>(attrs.parsed); |
| if (dev_mask == mshadow::cpu::kDevMask && param.act_type == activation::kReLU) { |
| *dispatch_mode = DispatchMode::kFComputeEx; |
| } |
| #else |
| CHECK_EQ(out_attrs->size(), 3); |
| #endif |
| for (int& out_attr : *out_attrs) |
| out_attr = kDefaultStorage; |
| return true; |
| } |
| |
| NNVM_REGISTER_OP(_contrib_quantized_act) |
| .describe(R"code(Activation operator for input and output data type of int8. |
| The input and output data comes with min and max thresholds for quantizing |
| the float32 data into int8. |
| |
| .. Note:: |
| This operator only supports forward propogation. DO NOT use it in training. |
| This operator only supports `relu`)code" ADD_FILELINE) |
| .set_num_inputs(3) |
| .set_num_outputs(3) |
| .set_attr_parser(ParamParser<ActivationParam>) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data", "min_data", "max_data"}; |
| }) |
| .set_attr<nnvm::FListOutputNames>("FListOutputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"output", "min_output", "max_output"}; |
| }) |
| .set_attr<nnvm::FInferType>("FInferType", QuantizedActivationType) |
| .set_attr<mxnet::FInferShape>("FInferShape", QuantizedActivationShape) |
| .set_attr<FInferStorageType>("FInferStorageType", QuantizedActivationStorageType) |
| .set_attr<FNeedRequantize>("FNeedRequantize", |
| [](const NodeAttrs& attrs) { |
| const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed); |
| CHECK(param.act_type == activation::kReLU) |
| << "_contrib_quantized_act only supports act_type=relu for now"; |
| return false; |
| }) |
| .add_argument("data", "NDArray-or-Symbol", "Input data.") |
| .add_argument("min_data", "NDArray-or-Symbol", "Minimum value of data.") |
| .add_argument("max_data", "NDArray-or-Symbol", "Maximum value of data.") |
| .add_arguments(ActivationParam::__FIELDS__()); |
| |
| |
| NNVM_REGISTER_OP(Activation) |
| .set_attr<FQuantizedOp>("FQuantizedOp", [](const NodeAttrs& attrs) { |
| const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed); |
| nnvm::ObjectPtr node = nnvm::Node::Create(); |
| if (param.act_type == activation::kReLU) { |
| node->attrs.op = Op::Get("_contrib_quantized_act"); |
| node->attrs.name = "quantized_" + attrs.name; |
| } else { |
| LOG(INFO) << "Currently, quantized activation only supports relu, exclude " |
| << attrs.name << " which act_type is " << param.act_type; |
| node->attrs.op = nullptr; |
| node->attrs.name = attrs.name; |
| } |
| node->attrs.dict = attrs.dict; |
| if (node->op() != nullptr && node->op()->attr_parser != nullptr) { |
| node->op()->attr_parser(&(node->attrs)); |
| } |
| return node; |
| }); |
| |
| } // namespace op |
| } // namespace mxnet |